Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Holzforschung

International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 70, Issue 5 (May 2016)

Issues

Characterisation of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS)

Alexey Vorobyev
  • Corresponding author
  • Division of Applied Mechanics, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivier Arnould / Didier Laux / Roberto Longo
  • ESEO Group – GSII, 49107 Angers, France
  • L’UNAM University, LAUM, CNRS UMR 6613, 72085 Le Mans, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nico P. van Dijk
  • Division of Applied Mechanics, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Kristofer Gamstedt
  • Division of Applied Mechanics, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-10 | DOI: https://doi.org/10.1515/hf-2015-0073

Abstract

The cylindrical orthotropy, inherent time-dependency response, and variation between and within samples make the stiffness characterisation of wood more challenging than most other structural materials. The purpose of the present study is to compare static loading with resonant ultrasound spectroscopy (RUS) and to investigate how to combine the advantages of each of these two methods to improve the estimation of the full set of elastic parameters of a unique sample. The behavior of wood as an orthotropic mechanical material was quantified by elastic engineering parameters, i.e. Poisson’s ratios and Young’s and shear moduli. Recent and waterlogged archaeological oak impregnated with polyethylene glycol (PEG) from the Vasa warship built in 1628 was in focus. The experimental results were compared, and the difference between RUS and static loading was studied. This study contributes additional information on the influence of PEG and degradation on the elastic engineering parameters of wood. Finally, the shear moduli and Poisson’s ratios were experimentally determined for Vasa archaeological oak for the first time.

Keywords: archaeological wood; compression test; cubic samples; elastic constants; oak wood; quasi-static loading; resonant ultrasound spectroscopy (RUS); Vasa ship

References

  • Bader, T.K., Eberhardsteiner, J., de Borst, K. (2015) Shear stiffness and its relation to the microstructure of 10 European and tropical hardwood species. Wood Mat. Sci. Eng.: 1–10. Doi: .CrossrefGoogle Scholar

  • Bjurhager, I., Halonen, H., Lindfors, E.-L., Iversen, T., Almkvist, G., Gamstedt, E.K., Berglund, L.A. (2012) State of degradation in archeological oak from the 17th century Vasa ship: substantial strength loss correlates with reduction in (holo)cellulose molecular weight. Biomacromolecules 13:2521–2527.Web of ScienceGoogle Scholar

  • Bjurhager, I., Ljungdahl, J., Wallström, L., Gamstedt, E.K., Berglund, L.A. (2010) Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung 64:243–250.Web of ScienceGoogle Scholar

  • Bodig, J., Jayne, B. Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, New York, 1982.Google Scholar

  • Bucur, V. Acoustics of Wood. Springer Series in Wood Science. Springer, Berlin, Heidelberg, 2006.Google Scholar

  • Cederlund, C.O., Hocker, F. (2006) Vasa I: the archaeology of a Swedish royal ship of 1628. In: Statens Maritima Museer. National Maritime Museum of Sweden.Google Scholar

  • Dahl, K.B., Malo, K.A. (2009) Planar strain measurements on wood specimens. Exp. Mech. 49:575–586.Web of ScienceGoogle Scholar

  • de Borst, K., Bader, T.K., Wikete, C. (2012) Microstructure stiffness relationships of ten European and tropical hardwood species. J. Struct. Biol. 177:532–542.Web of ScienceGoogle Scholar

  • Gonçalves, R., Trinca, A.J., Cerri, D.G.P. (2011) Comparison of elastic constants of wood determined by ultrasonic wave propagation and static compression testing. Wood Fiber Sci. 43:64–75.Google Scholar

  • Gonçalves, R., Trinca, A.J., Pellis, B.P. (2014) Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Sci. Technol. 48:269–287.Web of ScienceGoogle Scholar

  • Guitard, D., El Amri, F. (1987) Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux. Ann. Sci. Forest. 44:335–358.Google Scholar

  • Hassel, I., Berard, P., Moden, C.S., Berglund, L.A. (2009) The single cube apparatus for shear testing – Full-field strain data and finite element analysis of wood in transverse shear. Compos. Sci. Technol. 69:877–882.Web of ScienceGoogle Scholar

  • Hearmon, R.F.S. Elasticity of wood and plywood. Report No. 7. HM Stationary Office, London, 1948.Google Scholar

  • Hepworth, D.G., Vincent, I.F., Stringer, G., Jeronimidis, G. (2002) Variations in the morphology of wood structure can explain why hardwood species of similar density have very different resistance to impact and compressive loading. Philos. T. R. Soc. A 360:255–272.Google Scholar

  • Huang, Y. H., Liu, L., Sham, F.C., Chan, Y.S., Ng, S.P. (2010) Optical strain gauge vs. traditional strain gauges for concrete elasticity modulus determination. Optik 121:1635–1641.Web of ScienceGoogle Scholar

  • Kollmann, F. (1968) Mechanics and rheology of wood. In: Principle of Wood Science and Technology – 1. Solid Wood. Eds. Kollmann, F.P., Côté, W.A. Springer-Verlag, New York. pp. 292–419.Google Scholar

  • Ljungdahl, J., Berglund, L. (2007) Transverse mechanical behaviour and moisture absorption of waterlogged archaeological wood from the Vasa ship. Holzforschung 61:279–284.Web of ScienceGoogle Scholar

  • Longo, R., Delaunay, T., Laux, D., El Mouridi, M., Arnould, O., Le Ciezio, E. (2012) Wood elastic characterization from a single sample by resonant ultrasound spectroscopy. Ultrasonics 52:971–974.Web of ScienceGoogle Scholar

  • Longo, R., Laux, D., Pagano, S., Delaunay, T., Le Clezio, E., Arnould, O., (2014) Caractérisation élastique de bois de différentes densités par spectroscopie ultrasonore résonante (RUS). In: Matériaux 2014 – Conférence pluridisciplinaire sur les matériaux, 24–28 novembre 2014, Montpellier, France.Google Scholar

  • Majano-Majano, A., Fernandez-Kabo, J.L., Hoheisel, S., Klein, M. (2012) A test method for characterizing clear wood. Exp. Mech. 52:1079–1096.Google Scholar

  • Migliori, A., Darling, T.W., Baiardo, J.P., Freibert, F. (2001) Resonant ultrasound spectroscopy (RUS). In: Experimental Methods in the Physical Sciences. Eds. Levy, M., Bass, H.E., Stern, R. Elsevier. Vol. 39, pp. 189–220.Google Scholar

  • Ozyhar, T., Hering, S., Niemz, P. (2013) Moisture-dependent orthotropic tension-compression asymmetry of wood. Holzforschung 67:395–404.Web of ScienceGoogle Scholar

  • Rakotovololonalimanana, H., Chaix, G., Brancheriau, L., Ramamonjisoa, L., Ramananantoandro, T., Thevenon, M.F. (2015) A novel method to correct for wood MOE ultrasonics and NIRS measurements on increment cores in Liquidambar styraciflua L. Ann. For. Sci. 1-9. .CrossrefGoogle Scholar

  • Schubert, S.I., Gsell, D., Dual, J., Motavalli, M., Niemz, P. (2006) Rolling shear modulus and damping factor of spruce and decayed spruce estimated by modal analysis. Holzforschung 60:78–84.Google Scholar

  • Smith, I., Landis, E., Gong, M. Fracture and fatigue in wood. John Wiley and Sons, New York, 2003.Google Scholar

  • Sjödahl, M., Synnergren, P. (1999) A stereoscopic digital speckle photography system for 3-D displacement field measurements. Opt. Laser Eng. 31:425–443.Google Scholar

  • Toftegaard, H. (1999) Simulated stiffness determination from simple compression tests on a thick laminate. Compos. Part A-Appl. S. 30:849–858.Google Scholar

  • Tsoumis, G. Science and technology of wood. Structure, properties, utilization. Van Nostrand Reinhold, 1991.Google Scholar

  • Vázquez, C., Gonçalves, R., Bertoldo, C., Baño, V., Vega, A., Crespo, J., Guaita, M. (2015) Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Sci. Technol. 49:607–622.Web of ScienceGoogle Scholar

  • Volkmer, T., Lorenz, T., Hass, P., Niemz, P. (2014) Influence of heat pressure steaming (HPS) on the mechanical and physical properties of common oak wood. Eur. J. Wood Prod. 72: 249–259.Google Scholar

  • Xavier, J., de Jesus, A.M.P., Morais, J.L.L., Pinto, J.M.T. (2012) Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain. Constr. Build. Mater. 26:207–215.Web of ScienceGoogle Scholar

  • Zadler, B.J., Le Rousseau, J.H., Scales, J.A., Smith, M.L. (2004) Resonant ultrasound spectroscopy: theory and application. Geophys. J. Int. 156:154–169.Google Scholar

About the article

Corresponding author: Alexey Vorobyev, Division of Applied Mechanics, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden, e-mail: ;


Received: 2015-03-17

Accepted: 2015-08-10

Published Online: 2015-09-10

Published in Print: 2016-05-01


Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2015-0073.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gerald Koch, Eckhard Melcher, Marie-Therese Lenz, and Josef Bauch
Holzforschung, 2017, Volume 0, Number 0
[2]
Alexey Vorobyev, Ingela Bjurhager, Nico P. van Dijk, and E. Kristofer Gamstedt
Composites Science and Technology, 2016, Volume 137, Page 1
[3]
L. Wagner, G. Almkvist, T. K. Bader, I. Bjurhager, L. Rautkari, and E. K. Gamstedt
Wood Science and Technology, 2016, Volume 50, Number 6, Page 1103

Comments (0)

Please log in or register to comment.
Log in