Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Holzforschung

International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 70, Issue 6 (Jun 2016)

Issues

Influence of incubation time on the vibration and mechanic properties of mycowood

Marjan Sedighi Gilani
  • Corresponding author
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürg Neuenschwander
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Reliability Science and Technology Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus Heeb
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Furrer
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Reliability Science and Technology Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio J. Sanabria
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Reliability Science and Technology Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Berend C. Stoel
  • Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francis Willis Mathew Robert Schwarze
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-19 | DOI: https://doi.org/10.1515/hf-2015-0128

Abstract

The goal of the current study was to investigate the physical and mechanical properties of mycowood as a high quality tone-wood, obtained from Norway spruce by treatment of the white rot fungus Physisporinus vitreus as a function of the treatment time. In focus was the stiffness to weight ratio, which is often considered a main criterion for tone-wood selection. The vibro-mechanical properties were tested by non-destructive methods. The change of color and density were also measured after 4–12 months of fungal incubation. Density decreased up to 5% after 12 months of fungal treatment. Sound velocity was measured in small size specimens by means of the free-free vibration approach, while in large specimens the air-coupled ultrasound method was applied. The two techniques gave similar results and indicated that the sound velocity decreased in mycowood. Internal damping was increased in mycowood to a higher extent than the reduction in the specific modulus of elasticity (E/ρ) and thus the sound velocity in the material. The sound velocity was decreasing with increasing incubation times and scattering of data with this regard was larger in the transversal than in the longitudinal direction. The sound radiation coefficient and the characteristic impedance were enhanced in mycowood and its color was more brownish and richer in tone.

Keywords: air-coupled ultrasonics; colorimetery; internal damping (tanδ); mycowood; non-contact vibration; specific modulus of elasticity (E/ρ); tonal index; X-ray densitometry

References

  • Anon (2009) The biotech Stradivarius. Nature Biotechnology News 28:6.Google Scholar

  • Brémaud, I. (2012) Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J. Acoust. Soc. Am. 131:807–818.Web of ScienceGoogle Scholar

  • Brancheriau, L., Kouchade, C., Brémaud, I. (2010) Internal friction measurement of tropical species by various acoustic methods. J. Wood Sci. 56:371–379.Web of ScienceGoogle Scholar

  • Bucur, V. Acoustics of wood. Springer-Verlag Berlin, Germany, 1987.Google Scholar

  • Bodig, J., Jayne B.A. Mechanics of Wood and Wood Composites, Van Nostrand Reinhold Publishing, Scarborough, Ontario, Canada, 1982.Google Scholar

  • Cleary, M., Sturrock, R., Hodge, J. (2011) Southern Interior Forest Region: Laminated root disease Stand Establishment Decision Aid. BC J. Ecosystems and Management 12:17–20.Google Scholar

  • Ganne-Chédeville, C., Jääskelänen, A.S., Froidevaux, J., Hughes, M., Navi, P. (2012) Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 66:163–170.Web of ScienceGoogle Scholar

  • Hietala A.M., Nagy N.E., Steffenrem A., Fossdal C.G., Kvaalen H., Solheim H. (2009) Spatial patterns in hyphal growth and wood degradation within Norway spruce stems colonized by the pathogenic white-rot fungus Heterobasidion parviporum. Appl. Environ. Microbiol. 75:4069–4078.Google Scholar

  • Hill, C.A.S., Ramsay, R., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B., (2012) The water vapour sorption properties of thermally modified and densified wood. J. Mater. Sci. 47:3191–3197.Google Scholar

  • Obataya, E., Ono, T., Norimoto, M. (2000) Vibrational properties of wood along the grain. J. Mater. Sci. 35:2993–3001.Google Scholar

  • Ono, T., Norimoto, M. (1983) Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn. J. Appl. Phys. 22:611–614.Google Scholar

  • Pfriem, A., Eichelberger, K., Wagenführ, A. (2007) Acoustic properties of thermally modified spruce for use of violins. J. Violin Soc. Am. 21:102–111.Google Scholar

  • Rokhlin, S.I., Wang, W. (1992) Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials. J. Acoust. Soc. Am. 91:3303–3312.Google Scholar

  • Sanabria, S.J., Hilbers, U., Neuenschwander, J., Niemz, P., Sennhauser, U. (2013) Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images. Ultrasonics 53:157–170.Web of ScienceGoogle Scholar

  • Sanabria, S.J., Müller, C., Neuenschwander, J., Niemz, P., Sennhauser, U. (2011a) Air-coupled ultrasound as an accurate and reproducible method for bonding assessment of glued timber. Wood Sci. Technol. 45:645–659.Web of ScienceGoogle Scholar

  • Sanabria, S.J., Furrer, R., Neuenschwander, J., Niemz, P., Sennhauser, U. (2011b) Air-coupled ultrasound inspection of glued laminated timber. Holzforschung 65:377–387.Web of ScienceGoogle Scholar

  • Schwarze, F.W.M.R., Spycher, M., Fink, S. (2008) Superior wood for violins – wood decay fungi as a substitute for cold climate. New Phytol. 179:1095–1104.Web of ScienceGoogle Scholar

  • Schwarze, F.W.M.R., Schubert, M. (2011) Physisporinus vitreus: a versatile white-rot fungus for engineering value added wood products. Appl. Microbiol. Biotechnol. 92:431–440.Web of ScienceGoogle Scholar

  • Sedighi Gilani, M., Schwarze, F.W.M.R. (2015) Hygric properties of Norway spruce and sycamore after incubation with two white rot fungi. Holzforschung 69:77–86.Web of ScienceGoogle Scholar

  • Stoel, B.C., Borman, T.M., de Jongh, R. (2012) Wood Densitometry in 17th and 18th Century Dutch, German, Austrian and French Violins, Compared to Classical Cremonese and Modern Violins. PLoS One 7:e46629.Web of ScienceGoogle Scholar

  • Wegst, U.G.K. (2006) Wood for sound. Am. J. Bot. 93:1439–1448.Google Scholar

  • Yano, H., Kajita, H., Minato, K. (1994) Chemical treatment of wood for musical instruments. J. Acoust. Soc. Am. 96:3380–3391.Google Scholar

  • Zillig, W. (2009) Moisture transport in wood using a multiscale approach. Ph.D. thesis (Eng.), Building Physics Laboratory, Katholieke Universiteit Leuven.Google Scholar

About the article

Corresponding author: Marjan Sedighi Gilani, Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland, e-mail:

aPresent address: ETH Zürich, Computer Vision Laboratory, Sternwartstrasse 7, CH-8092 Zürich, Switzerland.


Received: 2015-06-04

Accepted: 2015-10-20

Published Online: 2015-11-19

Published in Print: 2016-06-01


Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2015-0128.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in