Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 2, 2017

Isolation and structural elucidation of heartwood extractives of Juglans sigillata

  • Liqiu Hu , Kai Wang , Guangbi Li , Rongyan Zhang , Yanyan Luo , Chuan-Ling Si EMAIL logo and Junhui Wang EMAIL logo
From the journal Holzforschung

Abstract

Juglans sigillata is a deciduous tree in Juglandaceae that grows native in southwestern China. The extracts of J. sigillata are used extensively in folk medicines to treat or prevent various diseases. However, the individual components of J. sigillata heartwood are not known. In this work, the following substances have been isolated from the heartwood: a new trans-feruloyl isoflavone glycoside, namely 3′-methoxy-5′-hydroxy-isoflavone-7-O-(4′′-trans-feruloyl)-β-D-glucoyranoside (I), a known isoflavone glucoside, i.e. 3′-methoxy-5′-hydroxy-isoflavone-7-O-β-D-glucoyranoside (II), and two known flavonol glycosides: kaempferol-3-O-α-L-rhamnopyranoside (III) and myricetin-3-O-α-L-rhamnopyranoside (IV). Chemical structures of extractives I~IV were elucidated mainly based on their spectroscopic [nuclear magnetic resonance (NMR), mass spectroscopy (MS), ultraviolet (UV) and infrared (IR)] and chemical analysis, as well as by comparison with literature data. Compound I was never isolated from any other plant, and it is described the first time in this work. Compound II was not found before in extracts of the genus Juglans, and the compounds III and IV are the first time described as components of J. sigillata extractives.

Acknowledgment

We thank the following for their financially support: the Open Fund of State Key Laboratory of Tree Genetics and Breeding (Chinese Academy of Forestry) (Grant No. TGB2016002), Jiangsu Province Biomass Energy and Materials Laboratory in Institute of Chemical Industry of Forest Products, CAF (JSBEM201601) and the Foundation (No. 2016IM003) of Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education and Tianjin Key Lab of Industrial Microbiology (Tianjin University of Science & Technology).

References

Agrawal, P.K. Carbon-13 NMR of Flavonoids. Elsevier, New York, 1989.10.1016/B978-0-444-87449-8.50011-0Search in Google Scholar

Cao, Z.Z., Cao, Y., Yi, Y.J., Wu, Y.P., Leng, Z.K., Du, L., Owen, N.L. (1999) A new isoflavone glucoside from Astragalus membranaceus. Acta Pharmaceutica Sinica. 34:392–394.Search in Google Scholar

Cheng, Z.Y., Yao, G.D., Guo, R., Huang, X.X., Song, S.J. (2017) Phenylpropanoids from Juglans mandshurica exhibit cytotoxicities on liver cancer cell lines through apoptosis induction. Bioorg. Med. Chem. Lett. 27:597–601.10.1016/j.bmcl.2016.12.005Search in Google Scholar PubMed

Farag, S.F., Kimura, Y., Ito, H., Takayasu, J., Tokuda, H., Hatano, T. (2009) New isoflavone glycosides from Iris spuria L. (Calizona) cultivated in Egypt. J. Nat. Med. 63:91–95.10.1007/s11418-008-0291-7Search in Google Scholar

Forinoa, M., Stiusob, P., Lamab, S., Ciminielloa, P., Tenorea, G.C., Novellinoa, E., Taglialatela-Scafatia, O. (2016) Bioassay-guided identification of the antihyperglycaemic constituents of walnut (Juglans regia) leaves. J. Funct. Foods 26:731–738.10.1016/j.jff.2016.08.053Search in Google Scholar

Fortes, G.A.C., Carvalho, A.G., Ramalho, R.R.F., da Silva, A.J.R., Ferri, P.H., Santos, S.C. (2015) Antioxidant activities of hydrolysable tannins and flavonoid glycosides isolated from Eugenia uniflora L. Rec. Nat. Prod. 9:251–256.Search in Google Scholar

Gao, J.Y., Jiang, Y.L., Niu, L.L., Li, H.D., Yin, W.P. (2016) Novel isoflavone from the cockroach Periplaneta americana. Chem. Nat. Compd. 52:413–41610.1007/s10600-016-1661-0Search in Google Scholar

Guo, L.N., Zhang, R., Guo, X.Y., Cui, T., Dong, W., Huo, J.H., Wang, W.M. (2015) Identfication of new naphthalenones from Juglans mandshurica and evalution of their anticancer activities. Chin. J. Nat. Med. 13:707–710.10.1016/S1875-5364(15)30070-4Search in Google Scholar PubMed

Harbone, J.B., Marby, T.J. The Flavonoids: Advanced in Research. Chapman and Hall, New York, 1982.10.1007/978-1-4899-2915-0Search in Google Scholar

Ito, H., Okuda, T., Fukuda, T., Hatano, T., Yoshida, T. (2007) Two novel dicarboxylic acid derivatives and a new dimeric hydrolyzable tannin from walnuts. J. Agric. Food Chem. 55:672–677.10.1021/jf062872bSearch in Google Scholar PubMed

Kadir, R., Ali, N.M., Soit, Z., Khamaruddin, Z. (2014) Anti-termitic potential of heartwood and bark extract and chemical compounds isolated from Madhuca utilis Ridl. H. J. Lam and Neobalanocarpus heimii King P. S. Ashton. Holzforschung 68:713–720.10.1515/hf-2013-0101Search in Google Scholar

Kite, G.C., Veitch, N.C., Boalch, M.E., Lewis, G.P., Leon, C.J., Simmonds, M.S.J. (2009) Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus sophorae and Flos sophorae. Phytochemistry 70:785–794.10.1016/j.phytochem.2009.04.003Search in Google Scholar PubMed

Lee, J.H., Ku, C.H., Baek, N.I., Kim, S.H., Park, H.W., Kim, D.K. (2004) Phytochemical constituents from Diodia teres. Arch. Pharm. Res. 27:40–43.10.1007/BF02980043Search in Google Scholar PubMed

Li, D.M., Peng, Y.L., Liu, G.M. (2015) Study on chemical constituents from green husk of Juglans sigillata. Chinese Trad. Herb. Drugs 46:962–965.Search in Google Scholar

Liu, Y., Murakami, N., Ji, H., Abreu, P., Zhang, S. (2007) Antimalarial flavonol glycosides from Euphorbia hirta. Pharm. Biol. 45:278–281.10.1080/13880200701214748Search in Google Scholar

Liu, Q., Zhao, P., Li, X.C., Jacob, M.R., Yang, C.R., Zhang, Y.J. (2010). New α-tetralone galloylglucosides from the fresh pericarps of Juglans sigillata. Helv. Chim. Acta 93:265–271.10.1002/hlca.200900177Search in Google Scholar

Mangindaan, B., Matsushita, Y., Aoki, D., Yagami, S., Kawamura, F., Fukushima, K. (2017) Analysis of distribution of wood extractives in Gmelina arborea by gas chromatography and time-of-flight secondary ion mass spectrometry. Holzforschung 71(4):299–305.10.1515/hf-2016-0129Search in Google Scholar

Mok, S.K., Lee, S.H. (2013) Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem. 136:969–974.10.1016/j.foodchem.2012.08.091Search in Google Scholar PubMed

Nagawa, C.B., Böhmdorfer, S., Rosenau, T. (2015) Chemical composition of volatiles extracted from indigenous tree species of Uganda: composition of bark extracts from Psorospermum febrifugum and Milicia excelsa. Holzforschung 69:815–821.10.1515/hf-2014-0283Search in Google Scholar

Owen, R.W., Haubner, R., Mier, W., Giacosa, A., Hull, W.E., Spiegelhalder, B., Bartsch, H. (2003) Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food Chem. Toxicol. 41:703–717.10.1016/S0278-6915(03)00011-5Search in Google Scholar PubMed

Park, B.J., Tomohiko, M. (2011) Feruloyl, caffeoyl, and flavonol glucosides from Equisetum hyemale. Chem. Nat. Compd. 47:363–365.10.1007/s10600-011-9934-0Search in Google Scholar

Park, H.Y., Kim, S.H., Kim, G.B., Sim, J.Y., Lim, S.S., Kim, M.J., Chun, W.J., Kwon, Y.S. (2010) A new isoflavone glycoside from the stem bark of Sophora japonica. Arch. Pharm. Res. 33:1165–1168.10.1007/s12272-010-0805-1Search in Google Scholar PubMed

Rateb, M.E., Hassan, H.M., Arafa, E.A., Jaspars, M., Ebel, R. (2014) Decorosides A and B, cytotoxic flavonoid glycosides from the leaves of Rhododendron decorum. Nat. Prod. Commun. 9:473–476.10.1177/1934578X1400900410Search in Google Scholar

Si, C.L., Liu, Z., Hui, L.F., Kim, J.K., Bae, Y.S. (2008) Chemical constituents and antioxidant activities of the extractives from Juglans mandshurica Maxim. bark. Chemistry and Industry of Forest Products, 28:29–32.Search in Google Scholar

Si, C.L., Kim, J.K., Bae, Y.S., Li, S.M. (2009) Phenolic compounds in the leaves of Populus ussuriensis and their antioxidant activities. Planta Med. 75:1165–1167.10.1055/s-0029-1185476Search in Google Scholar PubMed

Si, C.L., Qin, P.P., Hu, H.Y., Jiang, J.Z., Ni, Y.H. (2011) Low molecular weight extractives from green husks of Juglans sigillata and their antioxidant activities. J. Biobased Mater. Bio. 5:288–292.10.1166/jbmb.2011.1141Search in Google Scholar

Si, C.L., Jiang, J.Z., Liu, S.C., Hu, H.Y., Ren, X.D., Yu, G.J., Xu, G.H. (2013) A new lignan glycoside and phenolics from the branch wood of Pinus banksiana Lambert. Holzforschung 67:357–363.10.1515/hf-2012-0137Search in Google Scholar

Si, C.L., Wu, L., Shen, T., Huang, X.F., Du, Z.G., Ren, X.D., Luo, X.G., Hu, W.C. (2014) Recovery of Low-molecular weight galloyltannins from agricultural residue of Juglans sigillata Dode seed husks and their tyrosinase inhibitory effect. Bioresources 9:2226–2236.10.15376/biores.9.2.2226-2236Search in Google Scholar

Si, C.L., Fan, S., An, L.L. (2016a) Secondary metabolites from the leaves of Juglans sigillata. Chem. Nat. Compd. 52:1008–1010.10.1007/s10600-016-1848-4Search in Google Scholar

Si, C.L., Yu, G.J., Du, Z.G., Huang, X.F., Fan, S., Du, H.S., Hu, W.C. (2016b). A new cis-p-coumaroyl flavonol glycoside from the inner barks of Sophora japonica L. Holzforschung 70:39–45.10.1515/hf-2014-0342Search in Google Scholar

Tsasi, G., Milosevic-Ifantis, T., Skaltsa, H. (2016) Phytochemical study of Juglans regia L. pericarps from Greece with a chemotaxonomic approach. Chem. Biodivers. 13:1636–1640.10.1002/cbdv.201600067Search in Google Scholar PubMed

Vitor, R.F., Mota-Filipe, H., Teixeira, G., Borges, C., Rodrigues, A.I., Teixeira, A., Paulo, A. (2004) Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury. J. Ethnopharmacol. 93:363–370.10.1016/j.jep.2004.04.003Search in Google Scholar PubMed

Wang, S.-N., Zhang, F.-D., Huang, A.-M., Zhou, Q. (2016) Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. Holzforschung 70:503–510.10.1515/hf-2015-0125Search in Google Scholar

Watanabe, K., Kinjo, J., Nohara, T. (1993) Three new isoflavonoid glycosides from Lupinus luteus and L. polyphyllus×arboreus. Chem. Pharm. Bull. 41:394–396.10.1248/cpb.41.394Search in Google Scholar

Wu, Z.Y., Raven, P.H. Flora of China (vol. 4), Science Press, Beijing, 1999.Search in Google Scholar

Yahagi, T., Daikonya, A., Kitanaka, S. (2012) Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells. Chem. Pharm. Bull. 60:129–136.10.1248/cpb.60.129Search in Google Scholar PubMed

Yanase, Y., Sakamoto, K., Imai, T. (2015) Isolation and structural elucidation of norlignan polymers from the heartwood of Cryptomeria japonica. Holzforschung 69:281–296.10.1515/hf-2013-0251Search in Google Scholar

Zhang, H.Z., Liu, X., Zhou, P., Shi, Z.T., Deng, S.L., Zhang, H., Ma, Y. (2013) Composition and detection of monosaccharide in the polysaccharides of Juglans sigillata D. shells. Medicinal Plant 4:12–15.Search in Google Scholar

Received: 2017-2-25
Accepted: 2017-4-25
Published Online: 2017-6-2
Published in Print: 2017-9-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2017-0036/html
Scroll to top button