Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 71, Issue 12


The composition and chemical alteration of gums in the vessels of Phellodendron amurense

Peiming Zheng
  • School of Life Science, Shandong University, Jinan, China
  • Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sachie Yagami / Dan Aoki
  • Corresponding author
  • Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan, Phone: +81-52-789-4062, Fax: +81-52-789-4163
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Masato Yoshida / Yuzou Sano
  • Corresponding author
  • Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, Phone: +81-11-706-2516, Fax: +81-11-706-3859
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasuyuki Matsushita / Kazuhiko Fukushima
Published Online: 2017-08-14 | DOI: https://doi.org/10.1515/hf-2017-0057


An occluding substance (gum) was observed in the vessels of Phellodendron amurense Rupr. and analysed by spectroscopic and chemical methods. Following safranin-alcian blue staining, the gum in sapwood (sW) turned to blue and in heartwood (hW) to red. The gum was studied in situ by UV and Raman microscopies, time-of-flight secondary ion mass spectrometry (TOF-SIMS). The gum was isolated by laser microdissection (LMD) and it was alkali hydrolysed and the degradation products were analysed by GC-MS. The staining experiments, and the UV and Raman microscopies indicated that the major component of the sW gum is constituted of polysaccharides, while in the hW gum the aromatic character is dominating. TOF-SIMS measurements were interpreted as showing the aromatic substances in the hW gum did not contain lignin. The GC-MS analysis revealed the presence of vanillic acid in the degradation products of hW gum.

This article offers supplementary material which is provided at the end of the article.

Keywords: gum; heartwood; laser microdissection; Phellodendron amurense; Raman microscopy; sapwood


  • Adar, F., Atalla, R. (2010) Analysis of lignin and cellulose in biological energy sources by Raman microscopy. Spectroscopy 25:18–23.Google Scholar

  • Agarwal, U.P., Atalla, R.H. (1986) In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) BSP. Planta 169:325–332.CrossrefGoogle Scholar

  • Agarwal, U.P., Ralph, S.A. (2008) Determination of ethylenic residues in wood and TMP of spruce by FT-Raman spectroscopy. Holzforschung 62:667–675.Web of ScienceGoogle Scholar

  • Aist, J.R. (1983) Structural responses as resistance mechanisms. In: The Dynamics of Host Defence. Eds. Bailey, J.A., Deverall, B.J. Academic Press, Sydney. pp. 33–70.Google Scholar

  • Aoki, D., Saito, K., Matsushita, Y., Fukushima, K. (2016a) Distribution of cell wall components by TOF-SIMS. In: Secondary Xylem Biology. Eds. Kim, Y.S., Funada, R., Singh, A.P. Academic Press, London. pp. 363–377.Google Scholar

  • Aoki, D., Hanaya, Y., Akita, T., Matsushita, Y., Yoshida, M., Kuroda, K., Yagami, S., Takama, R., Fukushima, K. (2016b) Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci. Rep. 6:31525.CrossrefWeb of ScienceGoogle Scholar

  • Barnett, J.R., Cooper, P., Bonner, L.J. (1993) The protective layer as an extension of the apoplast. IAWA J. 14:163–171.CrossrefGoogle Scholar

  • Bonsen, K.J.M., Kučera, L.J. (1990) Vessel occlusions in plants: morphological, functional and evolutionary aspects. IAWA J. 11:393–399.CrossrefGoogle Scholar

  • Burikov, S., Dolenko, T., Patsaeva, S., Starokurov, Y., Yuzhakov, V. (2010) Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems. Mol. Phys. 108:2427–2436.Web of ScienceCrossrefGoogle Scholar

  • Chattaway, M.M. (1949) The development of tyloses and secretion of gum in heartwood formation. Aust. J. Biol. Sci. 2:227–240.CrossrefGoogle Scholar

  • De Micco, V., Balzano, A., Wheeler, E.A., Baas, P. (2016) Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. IAWA J. 37:186–205.CrossrefWeb of ScienceGoogle Scholar

  • Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body – Their Structure, Function, and Development, 3rd ed. Wiley, Hoboken, 2006.Google Scholar

  • Fischer, S., Schenzel, K., Fischer, K., Diepenbrock, W. (2005) Applications of FT Raman spectroscopy and microspectroscopy characterizing cellulose and cellulosic biomaterials. Macromol. Symp. 223:41–56.CrossrefGoogle Scholar

  • Foster, R.C. (1967) Fine structure of tyloses in three species of the Myrtaceae. Aust. J. Bot. 1:25–34.Google Scholar

  • Fujii, T., Lee, S.J., Kuroda, N., Suzuki, Y. (2001) Conductive function of intervessel pits through a growth ring boundary of Machilus thunbergii. IAWA J. 22:1–14.CrossrefGoogle Scholar

  • Fujita, M., Shoji, Y., Harada, H. (1977) Vessel blockades by gum in Albizia julibrissin Durazz. and Prunus jamasakura Sieb. Bull. Kyoto Univ. For. 49:116–121 (in Japanese with English summary).Google Scholar

  • Gagnon, C. (1967) Histochemical studies on the alteration of lignin and pectic substances in white elm infected by Ceratocystis ulmi. Can. J. Bot. 45:1619–1623.CrossrefGoogle Scholar

  • Gierlinger, N., Luss, S., König, C., Konnerth, J., Eder, M., Fratzl, P. (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J. Exp. Bot. 61:587–595.CrossrefWeb of SciencePubMedGoogle Scholar

  • Goacher, R.E., Jeremic, D., Master, E.R. (2011) Expanding the library of secondary ions that distinguish lignin and polysaccharides in time-of-flight secondary ion mass spectrometry analysis of wood. Anal. Chem. 83:804–812.Web of ScienceCrossrefPubMedGoogle Scholar

  • Graciano-Ribeiro, D., Nassar, N.M.A. (2012) A comparative anatomical study in cassava diploid and tetraploid hybrids. Plant Syst. Evol. 298:1711–1721.CrossrefWeb of ScienceGoogle Scholar

  • Harem, M.K., Liman, N. (2009) Histochemical method for demonstrating quail mast cell types simultaneously. Biotech. Histochem. 84:275–282.PubMedWeb of ScienceGoogle Scholar

  • Hillis, W.E. Heartwood and tree exudates. Springer-Verlag, Berlin, 1987.Google Scholar

  • Ji, Z., Ma, J.F., Zhang, Z.H., Xu, F., Sun, R.C. (2013) Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind Crops Prod. 47:212–217.Web of ScienceCrossrefGoogle Scholar

  • Jyske, T., Kuroda, K., Suuronen, J.P., Pranovich, A., Roig-Juan, S., Aoki, D., Fukushima, K. (2016) In planta localization of stilbenes within Picea abies phloem. Plant Physiol. 172:913–928.PubMedWeb of ScienceGoogle Scholar

  • Lee, Y.J., Perdian, D.C., Song, Z., Yeung, E.S., Nikolau, B.J. (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J. 70:81–95.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Ludwig, R.A. (1952) Studies on the physiology of hadromycotic wilting in the tomato plant. Macdonald Coll. Tech. Bull. 20:1–40.Google Scholar

  • Ma, J., Zhang, Z., Yang, G., Mao, J., Xu, F. 2011. Ultrastructural topochemistry of cell wall polymers in Populus nigra by transmission electron microscopy and Raman imaging. Bioresources 6:3944–3959.Google Scholar

  • Mangindaan, B., Matsushita, Y., Aoki, D., Yagami, S., Kawamura, F., Fukushima, K. (2017) Analysis of distribution of wood extractives in Gmelina arborea by gas chromatography and time-of-flight secondary ion mass spectrometry. Holzforschung 71:299–305.Web of ScienceGoogle Scholar

  • Marjamaa, K., Lehtonen, M., Lundell, T., Toikka, M., Saranpaa, P., Fagerstedt, K.V. (2003) Developmental lignification and seasonal variation in β–glucosidase and peroxidase activities in xylem of Scots pine, Norway spruce and silver birch. Tree Physiol. 23:977–986.CrossrefPubMedGoogle Scholar

  • Meyer, R.W. (1967) Tyloses development in white oak. Forest Prod. J. 17:50–56.Google Scholar

  • Nakashima, J., Chen, F., Jackson, L., Shadle, G., Dixon, R.A. (2008) Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol. 179:738–750.Web of SciencePubMedCrossrefGoogle Scholar

  • Nakazono, M., Qiu, F., Borsuk, L.A., Schnable, P.S. (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596.CrossrefPubMedGoogle Scholar

  • Nassar, N.M.A., Graciano-Ribeiro, D., Fernandes, S.D.C., Araujo, P.C. (2008) Anatomical alterations due to polyploidy in cassava, manihot esculenta crantz. Genet. Mol. Res. 7:276–283.PubMedCrossrefGoogle Scholar

  • Pearce, R.B., Holloway, P.J. (1984) Suberin in the sapwood of oak (Quercus robur L.): its composition from a compartmentalization barrier and its occurrence in tyloses in undecayed wood. Physiol. Plant Pathol. 24:71–81.CrossrefGoogle Scholar

  • Peetla, P., Schenzel, K.C., Diepenbrock, W. (2006) Determination of mechanical strength properties of hemp fibers using near-infrared fourier transform Raman microspectroscopy. Appl. Spectrosc. 60:682–691.CrossrefPubMedGoogle Scholar

  • Rioux, D., Nicole, M., Simard, M., Ouellette, G.B. (1998) Immunocytochemical evidence that secretion of pectin occurs during gel (gum) and tylosis formation in trees. Phytopathol. 88:494–505.CrossrefGoogle Scholar

  • Saito, K., Kato, T., Tsuji, Y., Fukushima, K. (2005) Identifying the characteristic secondary ions of lignin polymer using TOF-SIMS. Biomacromolecules, 6:678–683.CrossrefPubMedGoogle Scholar

  • Saito, K., Mitsutani, T., Imai, T., Matsushita, Y., Fukushima, K. (2008) Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry. Anal. Chem. 80:1552–1557.CrossrefWeb of SciencePubMedGoogle Scholar

  • Saitoh, T., Ohtani, J., Fukazawa, K. (1993) The occurrence and morphology of tyloses and gums in the vessels of Japanese hardwoods. IAWA J. 14:359–371.CrossrefGoogle Scholar

  • Schenzel, K., Almlöf, H., Germgård, U. (2009) Quantitative analysis of the transformation process of cellulose I → cellulose II using NIR-FT Raman spectroscopy and chemometric methods. Cellulose 16:407–415.Web of ScienceCrossrefGoogle Scholar

  • Scott, J.E., Dorling, J. (1965) Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochemie 5:221–233.PubMedCrossrefGoogle Scholar

  • Wheeler, E.A. (2011) Inside wood – a web resource for hardwood anatomy. IAWA J. 32:199–211.CrossrefGoogle Scholar

  • Zheng, P., Aoki, D., Yoshida, M., Matsushita, Y., Imai, T., Fukushima, K. (2014a) Lignification of ray parenchyma cells in xylem of Pinus densiflora. Part I: microscopic investigation by POM, UV microscopy, and TOF-SIMS. Holzforschung 68:897–905.Web of ScienceGoogle Scholar

  • Zheng, P., Aoki, D., Matsushita, Y., Yagami, S., Fukushima, K. (2014b) Lignification of ray parenchyma cells in the xylem of Pinus densiflora. Part II: microchemical analysis by laser microdissection and thioacidolysis. Holzforschung 68:907–913.Web of ScienceGoogle Scholar

  • Zheng, P., Aoki, D., Matsushita, Y., Yagami, S., Sano, Y., Yoshida, M., Fukushima, K. (2016) Lignification of ray parenchyma cells (RPCs) in the xylem of Phellodendron amurense Rupr.: quantitative and structural investigation by TOF-SIMS and thioacidolysis of laser microdissection cuts of RPCs. Holzforschung 70:641–652.Web of ScienceGoogle Scholar

  • Zheng, P., Ito, T., Aoki, D., Sato, S., Yoshida, M., Sano, Y., Matsushita, Y., Fukushima, K., Yoshida, K. (2017) Determination of inorganic element distribution in the freeze-fixed stem of Al2(SO4)3-treated Hydrangea macrophylla by TOF-SIMS and ICP-AES. Holzforschung 71:471–480.Google Scholar

  • Zimmerman, M.H. Xylem structure and the ascent of sap. Springer-Verlag, New York, 1983.Google Scholar

About the article

Received: 2017-04-11

Accepted: 2017-07-14

Published Online: 2017-08-14

Published in Print: 2017-11-27

Citation Information: Holzforschung, Volume 71, Issue 12, Pages 969–976, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0057.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in