Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 2

Issues

Effects of hot water extraction (HWE) of Douglas fir as a pre-process for the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL)

Rui Zhu
  • Corresponding author
  • Materials Science and Engineering Program, Washington State University, 2001 East Grimes Way, Pullman, WA 99164, United States of America
  • Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vikram Yadama
  • Composite Materials and Engineering Center, Washington State University, Pullman, WA 99164, United States of America
  • Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-08 | DOI: https://doi.org/10.1515/hf-2016-0080

Abstract

The process named “sulfite pretreatment to overcome recalcitrance of lignocellulose” (SPORL) is designed for the digestion of softwoods within the framework of the biorefinery concept. “Hot water extraction (HWE)” is an environmentally benign and low-cost pretreatment, which only needs water as a reagent. In the present study, HWE has been investigated as a pre-process prior to SPORL with Douglas fir as feedstock. The SPORL parameters, namely, temperature and treatment time, were in the range 135–155°C and 40–120 min, respectively, while the sulfuric acid concentration was 0.2–0.4% (v/v). The aim was to maximize the enzymatic digestibility of the treated wood. The severity of SPORL at different pretreatment conditions was characterized by the combined severity factor (CSF). The HWE pre-process led to a two-fold increase in specific surface area of the substrate. More hemicellulosic-derived simple sugars were dissolved in the spent liquor (SL) as the CSF increased from 1.23 to 1.82. A maximum enzymatic digestibility of 64.3% was attained when SPORL was conducted at 155°C for 120 min with a sulfuric acid concentration of 0.4% (v/v). A considerably high enzymatic digestibility (~55–60%) is still achievable by incorporating HWE prior to SPORL, even if the SPORL severity is reduced, namely to a lower temperature (145°C), a shorter time (80 min), and a lower acid volume (0.3% v/v).

Keywords: biorefinery; combined severity factor (CSF); Douglas fir; enzymatic digestibility; hot water extraction (HWE); HWE-SPORL; sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL)

References

  • Alizadeh, H., Teymouri, F., Gilbert, T.I., Dale, B.E. (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 124:1133–1141.Google Scholar

  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101:4851–4861.Google Scholar

  • Amidon, T.E., Wood, C.D., Shupe, A.M. (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J. Biobased Mater. Bioenergy. 2:100–120.Google Scholar

  • Assor, C., Placet, V., Chabbert, B., Habrant, A. (2009) Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood. J. Agric. Food Chem. 57:6830–6837.Google Scholar

  • Bianchi, S., Koch, G., Janzon, R., Mayer, I., Saake, B., Pichelin, F. (2016) Hot water extraction of Norway spruce (Picea abies [Karst.]) bark: analyses of the influence of bark aging and process parameters on the extract composition. Holzforschung 70:619–631.Google Scholar

  • Blumentritt, M., Gardner, D.J., Cole, B.J.W., Shaler, S.M. (2016) Influence of hot-water extraction on ultrastructure and distribution of glucomannans and xylans in poplar xylem as detected by gold immunolabeling. Holzforschung 70:243–252.Google Scholar

  • Brunauer, S., Emmett, P.H., Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60:309–319.Google Scholar

  • Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., Alfani, F. (2004) Effect of Inhibitors Released during Steam-Explosion Treatment of Poplar Wood on Subsequent Enzymatic Hydrolysis and SSF. Biotechnol. Prog. 20:200–206.Google Scholar

  • Cateto, C., Hu, G., Ragauskas, A. (2011) Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ. Sci. 4:1516–1521.Google Scholar

  • Chaffee, T.L. (2011) Potential for enhanced properties of wood products by hot water extraction of low-value, undebarked ponderosa pine. SUNY College of Environmental Science Forestry, Syracuse. 81:1496412.Google Scholar

  • Dautzenberg, G., Gerhardt, M., Kamm, B. (2011) Bio based fuels and fuel additives from lignocellulose feedstock via the production of levulinic acid and furfural. Holzforschung 65:439–451.Google Scholar

  • Fengel, D., Wegener, G. (1983) Wood: chemistry, ultrastructure, reactions. de Gruyter.Google Scholar

  • Goh, C.S., Lee, K.T., Bhatia, S. (2010) Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol. Bioresour. Technol. 101:7362–7367.Google Scholar

  • Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D. (2007) Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 315:804–807.Google Scholar

  • Hörhammer, H., Walton, S., van Heiningen, A. (2011) A larch based biorefinery: pre-extraction and extract fermentation to lactic acid. Holzforschung 65:491–496.Google Scholar

  • Horn, S.J., Eijsink, V.G.H. (2010) Enzymatic Hydrolysis of Steam-Exploded Hardwood Using Short Processing Times. Biosci. Biotechnol. Biochem. 74:1157–1163.Google Scholar

  • Jeoh, T., Ishizawa, C.I., Davis, M.F., Himmel, M.E., Adney, W.S., Johnson, D.K. (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98:112–122.Google Scholar

  • Kleen, M., Pranovich, A., Willför, S. (2016) Statistical modeling of pressurized hot-water batch extraction (PHWE) to produce hemicelluloses with desired properties. Holzforschung 70:633–640.Google Scholar

  • Lan, T.Q., Gleisner, R., Zhu, J.Y., Dien, B.S., Hector, R.E. (2013a) High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresour. Technol. 127:291–297.Google Scholar

  • Lan, T.Q., Lou, H., Zhu, J.Y. (2013b) Enzymatic Saccharification of Lignocelluloses Should be Conducted at Elevated pH 5.2–6.2. Bioenergy Res. 6:476–485.Google Scholar

  • Larsson, S., Reimann, A., Nilvebrant, N.-O., Jönsson, L.J. (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77:91–103.Google Scholar

  • Lee, S.-H., Chang, F., Inoue, S., Endo, T. (2010) Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresour. Technol. 101:7218–7223.Google Scholar

  • Lehto, J., Alén, R. (2015) Organic materials in black liquors of soda-AQ pulping of hot-water-extracted birch (Betula pendula) sawdust. Holzforschung 69:257–264.Google Scholar

  • Leu, S.-Y., Zhu, J.Y., Gleisner, R., Sessions, J., Marrs, G. (2013) Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. Biomass and Bioenergy 59:393–401.Google Scholar

  • Lou, H., Zhu, J.Y., Lan, T.Q., Lai, H., Qiu, X. (2013) pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses. ChemSusChem 6:919–927.Google Scholar

  • Mabee, W.E., Gregg, D.J., Arato, C., Berlin, A., Bura, R., Gilkes, N., Mirochnik, O., Pan, X., Pye, E.K., Saddler, J.N. (2006) Updates on softwood-to-ethanol process development. Appl. Biochem. Biotechnol. 129:55–70.Google Scholar

  • Mansfield, S.D., Mooney, C., Saddler, J.N. (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15:804–816.Google Scholar

  • Mendes, C., Teixeira, V., Baptista, C.M.S.G., Rocha, J.M.S., Carvalho, M.G.V.S. (2009) Prehydrolysis of Eucalyptus globulus Labill. hemicelluloses prior to pulping and fermentation of the hydrolysates with the yeast Pichia stipitis 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:737–743.Google Scholar

  • Muzamal, M., Jedvert, K., Theliander, H., Rasmuson, A. (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66.Google Scholar

  • Nebreda, A.P., Grénman, H., Mäki-Arvela, P., Eränen, K., Hemming, J., Willför, S., Murzin, D.Y., Salmi, T. (2016) Acid hydrolysis of O-acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung 70:187–194.Google Scholar

  • Palmqvist, E., Hahn-Hägerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74:25–33.Google Scholar

  • Park, S.J., Um, B.H. (2015) Optimization study on acid hydrolysis of hardwood-derived hemicellulosic extract for alcohol fermentation using response surface methodology. Holzforschung 69:135–141.Google Scholar

  • Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C. (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Lab, TN.Google Scholar

  • Pu, Y., Treasure, T., Gonzalez, R., Venditti, R., Jameel, H. (2011) Autohydrolysis pretreatment of mixed hardwoods to extract value prior to combustion. Bioresources 6:4856–4870.Google Scholar

  • Saska, M., Ozer, E. (1995) Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol. Bioeng. 45:517–523.Google Scholar

  • Schütt, F., Puls, J., Saake, B. (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459.Google Scholar

  • Sharples, A. (1957) The hydrolysis of cellulose and its relation to structure. Trans. Faraday Soc. 53:1003–1013.Google Scholar

  • Shuai, L., Yang, Q., Zhu, J.Y., Lu, F.C., Weimer, P.J., Ralph, J., Pan, X.J. (2010) Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour. Technol. 101:3106–3114.Google Scholar

  • Silva, D., A.S., Inoue, H., Endo, T., Yano, S., Bon, E.P.S. (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101:7402–7409.Google Scholar

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2011) Determination of structural carbohydrates and lignin in biomass. Golden, Colorado: National Renewable Energy Laboratory; 2010 Jul. Report N. TP-510-42618, 17.Google Scholar

  • Testova, L., Chong, S.-L., Tenkanen, M., Sixta, H. (2011) Autohydrolysis of birch wood. Holzforschung 65:535–542.Google Scholar

  • Tunc, M.S., Chheda, J., van der Heide, E., Morris, J., van Heiningen, A. (2014) Pretreatment of hardwood chips via autohydrolysis supported by acetic and formic acid. Holzforschung 68:401–409.Google Scholar

  • Vila, C., Francisco, J.L., Santos, V., Parajó, J.C. (2013) Effects of hydrothermal processing on the cellulosic fraction of Eucalyptus globulus wood. Holzforschung 67:33–40.Google Scholar

  • Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, W., Zhang, Y., Xu, J., Xu, H. (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 101:4895–4899.Google Scholar

  • Zhang, Y.-H.P., Lynd, L.R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88:797–824.Google Scholar

  • Zhang, R., Lu, X., Sun, Y., Wang, X., Zhang, S. (2011) Modeling and optimization of dilute nitric acid hydrolysis on corn stover. J. Chem. Technol. Biotechnol. 86:306–314.Google Scholar

  • Zhou, H., Zhu, J.Y., Gleisner, R., Qiu, X., Horn, E., Negrón, J. (2016) Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate. Holzforschung 70:21–30.Google Scholar

  • Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R. (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100:2411–2418.Google Scholar

  • Zhu, J.Y., Zhu, W., OBryan, P., Dien, B.S., Tian, S., Gleisner, R., Pan, X.J. (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl. Microbiol. Biotechnol. 86:1355–1365.Google Scholar

  • Zhu, J.Y., Zhang, X., Pan, X.J. (2011) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS Symposium Series (Chapter 9), American Chemical Society, Washington, DC.CrossrefGoogle Scholar

  • Zhu, W., Houtman, C.J., Zhu, J.Y., Gleisner, R., Chen, K.F. (2012) Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF). Process Biochem. 47:785–791.Google Scholar

  • Zhu, J.Y., Chandra, M.S., Gu, F., Gleisner, R., Reiner, R., Sessions, J., Marrs, G., Gao, J., Anderson, D. (2015) Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour. Technol. 179:390–397.Google Scholar

About the article

Received: 2016-05-11

Accepted: 2016-08-29

Published Online: 2016-10-08

Published in Print: 2017-02-01


Citation Information: Holzforschung, Volume 71, Issue 2, Pages 91–98, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0080.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in