Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 71, Issue 6


2D NMR characterization of wheat straw residual lignin after dilute acid pretreatment with different severities

Anders JensenORCID iD: http://orcid.org/0000-0002-4526-4558 / Yohanna CabreraORCID iD: http://orcid.org/0000-0002-0388-496X / Chia-Wen Hsieh
  • Department of Geosciences and Nature Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John Nielsen
  • Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John RalphORCID iD: http://orcid.org/0000-0002-6093-4521
  • Department of Biochemistry, and the Department of Energy’s Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave. Madison, WI 53726-4084, USA
  • orcid.org/0000-0002-6093-4521
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claus Felby
  • Corresponding author
  • Department of Geosciences and Nature Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-18 | DOI: https://doi.org/10.1515/hf-2016-0112


The chemical characteristics of wheat straw lignin pretreated under dilute acid conditions were compared. After pretreatment, the lignin content of the solid residue increased as temperature increased (from 160°C to 190°C) and with the amount of acid added (0%, 0.25%, or 1% H2SO4). Pretreatment at 190°C with increasing concentrations of acid catalyst led to a decrease in glucan content, whereas the glucan content remained almost constant at 160°C pretreatment regardless of the acid concentration. The xylan content decreased in proportion with increased acid concentration and pretreatment temperature. The residual lignins were characterized by solution-state, two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy and size-exclusion chromatography (SEC). Results showed that more ether bonds were cleaved with increased pretreatment temperature and lower pH, whereas the levels of carbon-carbon bonded structures (e.g. phenylcoumaran and resinol units) were hardly affected. With a pretreatment of 160°C and 1% H2SO4, the majority of the β-O-4 bonds were cleaved. In addition, lignin depolymerization was more evident than repolymerization at higher pretreatment temperatures and lower pH. Documenting lignin structural changes as a function of pretreatment parameters provides a tool for biorefineries to gain flexibility in processing parameters with full control over the final properties of the products.

Keywords: biorefining; depolymerization; repolymerization; size-exclusion chromatography (SEC); tricin; whole-cell-wall nuclear magnetic resonance (NMR)


  • Blumentritt, M., Gardner Douglas, J., Cole Barbara, J.W., Shaler Stephen, M. (2016) Influence of hot-water extraction on ultrastructure and distribution of glucomannans and xylans in poplar xylem as detected by gold immunolabeling. Holzforschung 70:243–252.Web of ScienceGoogle Scholar

  • del Río, J.C., Rencoret, J., Prinsen, P., Martínez, Á.T., Ralph, J., Gutiérrez, A. (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR and reductive cleavage methods. J. Agric. Food. Chem. 60:5922–5935.Google Scholar

  • El Hage, R., Chrusciel, L., Desharnais, L., Brosse, N. (2010) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour. Technol. 101:9321–9329.Web of ScienceCrossrefGoogle Scholar

  • Gellerstedt, G., Henriksson, G. Lignins: Major Sources, Structure and Properties. Elsevier, Amsterdam, The Netherlands, 2008.Google Scholar

  • Hansen, M.A.T., Jørgensen, H., Laursen, K.H., Schjoerring, J.K., Felby, C. (2013) Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol. Biomass Bioenergy. 56:572–581.CrossrefGoogle Scholar

  • Heikkinen, H., Elder, T., Maaheimo, H., Rovio, S., Rahikainen, J., Kruus, K., Tamminen, T. (2014) Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods. J. Agric. Food. Chem. 62:10437–10444.Web of ScienceCrossrefGoogle Scholar

  • Jørgensen, H., Kristensen, J. B., Felby, C. (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefin. 1:119–134.CrossrefGoogle Scholar

  • Kaparaju, P., Felby, C. (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresour. Technol. 101:3175–3181.Web of ScienceCrossrefGoogle Scholar

  • Kim, H., Ralph, J. (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8:576–591.Web of ScienceGoogle Scholar

  • Kleen, M., Pranovich, A., Willför, S. (2016) Statistical modeling of pressurized hot-water batch extraction (PHWE) to produce hemicelluloses with desired properties. Holzforschung 70:633–640.Web of ScienceGoogle Scholar

  • Klinke, H.B., Thomsen, A.B., Ahring, B.K. (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66:10–26.CrossrefGoogle Scholar

  • Lan, W., Lu, F., Regner, M., Zhu, Y., Rencoret, J., Ralph, S.A., Zakai, U.I., Morreel, K., Boerjan, W., Ralph, J. (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol. 167:1284–1295.Web of ScienceGoogle Scholar

  • Lan, W., Morreel, K., Lu, F., Rencoret, J., Carlos del Río, J., Voorend, W., Vermerris, W., Boerjan, W., Ralph, J. (2016) Maize tricin-oligolignol metabolites and their implications for monocot lignification. Plant Physiol. 171:810–820.Google Scholar

  • Larsen, J., Haven, M.Ø., Thirup, L. (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy. 46:36–45.Web of ScienceCrossrefGoogle Scholar

  • Laskar, D.D., Yang, B., Wang, H., Lee, J. (2013) Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels. Bioprod. Biorefin. 7:602–626.CrossrefGoogle Scholar

  • Lehto, J., Alén, R. (2015) Organic materials in black liquors of soda-AQ pulping of hot-water-extracted birch (Betula pendula) sawdust. Holzforschung 69:257–264.Web of ScienceGoogle Scholar

  • Li, J., Henriksson, G., Gellerstedt, G. (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98:3061–3068.Web of ScienceCrossrefGoogle Scholar

  • Liitiä, T.M., Maunu, S.L., Hortling, B., Toikka, M., Kilpeläinen, I. (2003) Analysis of technical lignins by two- and three-dimensional NMR spectroscopy. J. Agric. Food. Chem. 51:2136–2143.CrossrefGoogle Scholar

  • López, Y., Gullón, B., Puls, J., Parajó Juan, C., Martín, C. (2011) Dilute acid pretreatment of starch-containing rice hulls for ethanol production. Holzforschung 65:467–473.Web of ScienceGoogle Scholar

  • Mansfield, S.D., Kim, H., Lu, F., Ralph, J. (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protocols. 7:1579–1589.CrossrefWeb of ScienceGoogle Scholar

  • Muzamal, M., Jedvert, K., Theliander, H., Rasmuson, A. (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66.CrossrefWeb of ScienceGoogle Scholar

  • Nebreda A.P., Grénman, H., Mäki-Arvela, P., Eränen, K., Hemming, J., Willför, S., Murzin Dmitry, Y., Salmi, T. (2016) Acid hydrolysis of O-acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung 70:187–194.Web of ScienceGoogle Scholar

  • Rahikainen, J., Mikander, S., Marjamaa, K., Tamminen, T., Lappas, A., Viikari, L., Kruus, K. (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood – study of enzyme binding and inactivation on lignin-rich surface. Biotechnol. Bioeng. 108:2823–2834.Web of ScienceCrossrefGoogle Scholar

  • Rahikainen, J.L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O.J., Kruus, K. (2013) Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresour. Technol. 133:270–278.Web of ScienceGoogle Scholar

  • Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., Weckhuysen, B.M. (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55:8164–8215.CrossrefWeb of ScienceGoogle Scholar

  • Rivas, S., Vila, C., Santos, V., Parajó Juan, C. (2016) Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung 70:901–910.Web of ScienceGoogle Scholar

  • Schütt, F., Puls, J., Saake, B. (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459.Web of ScienceGoogle Scholar

  • Selig, M.J., Viamajala, S., Decker, S.R., Tucker, M.P., Himmel, M.E., Vinzant, T.B. (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Progr. 23:1333–1339.CrossrefWeb of ScienceGoogle Scholar

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2010) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Report No. TP-510-42618.Google Scholar

  • Talebnia, F., Karakashev, D., Angelidaki, I. (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101:4744–4753.CrossrefWeb of ScienceGoogle Scholar

  • Tohmura, S.-I., Argyropoulos, D.S. (2001) Determination of arylglycerol-β-aryl ethers and other linkages in lignins using DFRC/31P NMR. J. Agric. Food. Chem. 49:536–542.CrossrefGoogle Scholar

  • Trajano, H.L., Engle, N.L., Foston, M., Ragauskas, A.J., Tschaplinski, T.J., Wyman, C.E. (2013) The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels. 6:1–16.Google Scholar

  • Tunc, M.S., Chheda, J., van der Heide, E., Morris, J., van Heiningen, A. (2014) Pretreatment of hardwood chips via autohydrolysis supported by acetic and formic acid. Holzforschung 68:401–409.Google Scholar

  • Várnai, A., Siika-aho, M., Viikari, L. (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb. Technol. 46:185–193.Google Scholar

  • Vila, C., Francisco José, L., Santos, V., Parajó Juan, C. (2013) Effects of hydrothermal processing on the cellulosic fraction of Eucalyptus globulus wood. Holzforschung 67:33–40.Web of ScienceCrossrefGoogle Scholar

  • Yang, B., Wyman, C.E. (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Biorefin. 2:26–40.CrossrefGoogle Scholar

  • Yelle, D., Kaparaju, P., Hunt, C., Hirth, K., Kim, H., Ralph, J., Felby, C. (2013) Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis. Bioenergy Res. 6:211–221.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-07-14

Accepted: 2017-02-06

Published Online: 2017-03-18

Published in Print: 2017-06-27

Citation Information: Holzforschung, Volume 71, Issue 6, Pages 461–469, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0112.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jikun Xu, Bingchuan Liu, Longsheng Wu, Jingping Hu, Huijie Hou, and Jiakuan Yang
Industrial Crops and Products, 2019, Volume 129, Page 269
Zhi-Hua Liu, Naijia Hao, Somnath Shinde, Yunqiao Pu, Xiaofeng Kang, Arthur J. Ragauskas, and Joshua S. Yuan
Green Chemistry, 2018
Jun-Gang Jiang, Tong-Qi Yuan, Shuang-Fei Wang, Shi-Jie Liu, Xiao-Dan Shi, Lu Zheng, and Run-Cang Sun
ACS Sustainable Chemistry & Engineering, 2018
Hongliang Wang, Yunqiao Pu, Arthur Ragauskas, and Bin Yang
Bioresource Technology, 2018
Xiaoyan He, Francesca Luzi, Weijun Yang, Zefang Xiao, Luigi Torre, Yanjun Xie, and Debora Puglia
ACS Sustainable Chemistry & Engineering, 2018
Mads M. Jensen, Demi T. Djajadi, Cristian Torri, Helene B. Rasmussen, Rene Bjerregaard Madsen, Elisa Venturini, Ivano Vassura, Jacob Becker, Bo B. Iversen, Anne S Meyer, Henning Jørgensen, Daniele Fabbri, and Marianne Glasius
ACS Sustainable Chemistry & Engineering, 2018
Dengle Duan, Roger Ruan, Hanwu Lei, Yuhuan Liu, Yunpu Wang, Yayun Zhang, Yunfeng Zhao, Leilei Dai, Qiuhao Wu, and Shumei Zhang
Bioresource Technology, 2018

Comments (0)

Please log in or register to comment.
Log in