Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 71, Issue 6


An innovative composite plywood for the acoustic improvement of small closed spaces

Francesco Negro / Corrado Cremonini / Marco Fringuellino / Roberto Zanuttini
Published Online: 2017-04-13 | DOI: https://doi.org/10.1515/hf-2016-0122


Poor acoustics is a common problem in many small closed rooms such as offices or dining rooms. Sound absorbing panels used as wall or ceiling coverings can be a remedy. In the present paper, the sound absorption properties of a composite made of two plywood skins bonded to an inner honeycomb core of plywood cells, designed by the authors in a previous study, were improved by drilling the surfaces. The holes communicate with the void cells of the core, activating the Helmholtz resonance effect. The acoustic behavior of small specimens and final-size samples are described, which were also tested in a reverberation chamber and in a real dining room. The developed lightweight composite plywood achieved αmax 0.90 values (maximal sound absorption coefficients) around 400 Hz, i.e. in the low frequency range, resulting in being well suited for various acoustic improvements.

Keywords: composite plywood; Helmholtz resonators; honeycomb core; lightweight panels; perforated panels; poplar veneer; sound absorption; wood based panel


  • Arenas, J.P., Crocker, M.J. (2010) Recent trends in porous sound-absorbing materials. Sound Vib. 44:12–17.Google Scholar

  • Blackstock, D.T. Fundamentals of Physical Acoustics. John Wiley & Sons, Inc., New York, 2000.Google Scholar

  • Bucur, V. Acoustics of Wood. Springer-Verlag, Berlin, 2006.Google Scholar

  • Castro, G., Zanuttini, R. (2008) Poplar cultivation in Italy: history, state of the art, perspectives. In: Proceedings of the Cost Action E44 Final Conference on a European wood processing strategy, Ghent University, Milan.Google Scholar

  • Cox, T.J., D’Antonio, P. Acoustic Absorbers and Diffusers. Spon Press, New York, 2004.Google Scholar

  • EN ISO 10534–2:2001. Acoustics. Determination of sound absorption coefficient and impedance in impedance tubes. Part 2: Transfer function method. European Committee for Standardization, Brussels.Google Scholar

  • EN 354:2003. Acoustics. Measurement of sound absorption in a reverberation chamber. European Committee for Standardization, Brussels.Google Scholar

  • EN ISO 3382–1,2,3:2012. Acoustics. Measurement of room acoustic parameters. European Committee for Standardization, Brussels.Google Scholar

  • Everest, F.A., Pohlmann, K.C. Master Handbook of Acoustic – Fifth edition. McGraw Hill, New York, 2009.Google Scholar

  • Ginn K.B. Architectural Acoustics. Brüel & Kjær, Nærum, 1978.Google Scholar

  • Kang, J. (2002) Numerical modeling of the speech intelligibility in dining spaces. Appl. Acoust. 63:1315–1333.CrossrefGoogle Scholar

  • Negro, F., Cremonini, C., Properzi, M., Pichelin, F., Zanuttini, R. (2011) A new wood-based lightweight composite for boatbuilding. Wood Res. 56:257–266.Google Scholar

  • Negro, F., Cremonini, C., Fringuellino, M., Zanuttini, R. (2016) Development of framed poplar plywood for acoustic improvement. Wood Res. 61:121–128.Google Scholar

  • Kuttruff, H. Room Acoustics – Fifth edition. Spoon Press, Abingdon, 2009.Google Scholar

  • Smardzewski, J., Batko, W., Kamisiński, T., Flach, A., Plich, A., Dziurka, D., Mirski, R., Roszyk, E., Majewski, A. (2014) Experimental study of wood acoustic absorption characteristics. Holzforschung 68:467–476.Web of ScienceGoogle Scholar

  • Smardzewski, J., Kamisiński, T., Dziurka, D., Mirski, R., Majewski, A., Flach A., Plich A. (2015) Sound absorption of wood-based materials. Holzforschung 69:431–439.Web of ScienceGoogle Scholar

  • Tang, S.K., Chan, J.V.C. (1996) Some characteristics of noise in air-conditioned landscaped offices. Appl. Acoust. 48:249–267.CrossrefGoogle Scholar

  • Thömen, H. (2008) Lightweight panels for the European furniture industry: some recent developments. In: Proceedings of the COST E49 Conference: Lightweight Wood-based Composites. Production, Properties and Usage. Bled, 23rd–25th June.Google Scholar

  • Webster, E.S., Davies, C.E. (2010) The use of Helmholtz resonance for measuring the volume of liquids and solids. Sensors 10:10663–10672.CrossrefWeb of ScienceGoogle Scholar

  • Yost, W.A. (2014) Psychoacoustics and auditory perception. In: Perspectives on Auditory Research. Eds. Popper, A.N., Fay, R.R. Springer Science+Business Media, New York. pp. 611–631.Google Scholar

About the article

Received: 2016-07-27

Accepted: 2017-03-13

Published Online: 2017-04-13

Published in Print: 2017-06-27

Citation Information: Holzforschung, Volume 71, Issue 6, Pages 521–526, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0122.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in