Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 6

Issues

The combined effects of initial microfibrillar angle and moisture contents on the tensile mechanical properties and angle alteration of wood foils during tension

Hankun Wang
  • Department of Biomaterials, International Center for Bamboo and Rattan, No.8, Futong Dong Dajie, Wangjing Area, Chaoyang District, Beijing 100102, China
  • SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zixuan Yu
  • Department of Biomaterials, International Center for Bamboo and Rattan, No.8, Futong Dong Dajie, Wangjing Area, Chaoyang District, Beijing 100102, China
  • SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xuexia Zhang
  • Department of Biomaterials, International Center for Bamboo and Rattan, No.8, Futong Dong Dajie, Wangjing Area, Chaoyang District, Beijing 100102, China
  • SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dan Ren
  • Department of Biomaterials, International Center for Bamboo and Rattan, No.8, Futong Dong Dajie, Wangjing Area, Chaoyang District, Beijing 100102, China
  • SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Yu
  • Corresponding author
  • SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, P.R. China
  • Department of Biomaterials, International Center for Bamboo and Rattan, No.8, Futong Dong Dajie, Wangjing Area, Chaoyang District, Beijing 100102, China, Phone: +86-10-84789812, Fax: +86-10-84238052
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-25 | DOI: https://doi.org/10.1515/hf-2016-0138

Abstract

The combined effects of initial microfibril angle (MFA) and moisture content (MC) on the longitudinal tensile properties of Masson pine (Pinus massoniana Lamb.) wood foils has been investigated. Synchrotron X-ray diffraction (XRDsyn) combined with a custom-built microtensile device was applied for in situ monitoring of the MFA alterations in the foils under different initial MFAs and MCs conditions. The results demonstrate that the tensile properties are highly negatively correlated to both MFA and MC. Furthermore, the tensile modulus is more sensitive to MC change than tensile strength. At a higher MFA, the sensitivity of the two mechanical indicators to MC alteration is enhanced.

Keywords: mechanical properties; MFA alteration; microfibril angle (MFA); moisture content (MC); synchroton X-ray diffraction

References

  • Andersson, S., Serimaa, R., Torkkeli, M., Paakkari, T., Saranpää, P., Pesonen, E. (2000) Aicrofibril angle of norway spruce compression wood: comparison of measuring techniques. J. Wood Sci. 46:343–349.CrossrefGoogle Scholar

  • Ashby, M.F., Gibson, L.J., Wegst, U., Olive, R. (1995) The mechanical properties of natural materials. I. Material property charts. Proc. R. Soc. London A 450:123–140.Google Scholar

  • Barber, N.F., Meylan, B.A. (1964) The anisotropic shrinkage of wood. A theoretical model. Holzforschung 18:146–156.CrossrefGoogle Scholar

  • Barrett, J.D., Schniedwind, A.P., Taylor, R.L. (1972) Theoretical shrinkage model for wood cell walls. Wood Sci. 4:178–192.Google Scholar

  • Bergander, A., Salmén, L. (2000) Variations in transverse fiber wall properties: relations between elastic properties and structure. Holzforschung 54:654–660.Google Scholar

  • Bergander, A., Salmén, L. (2002) Cell wall properties and their effects on the mechanical properties of fibers. J. Mater. Sci. 37:151–156.CrossrefGoogle Scholar

  • Bonarski, J.T., Kifetew, G., Olek, W. (2015) Effects of cell wall ultrastructure on the transverse shrinkage anisotropy of Scots pine wood. Holzforschung 69:501–507.Web of ScienceGoogle Scholar

  • Brémaud, I., Ruelle, J., Thibaut, A., Thibaut, B. (2013) Changes in viscoelastic vibrational properties between compression and normal wood: roles of microfibril angle and of lignin. Holzforschung 67:75–85.Web of ScienceCrossrefGoogle Scholar

  • Cave, I.D. (1966) Theory of X-ray measurement of microfibril angle in wood. For. Prod. J. 16:37–42.Google Scholar

  • Cave, I.D. (1972a) A theory of shrinkage of wood. Wood Sci. Technol. 6:284–292.CrossrefGoogle Scholar

  • Cave, I.D. (1972b) Swelling of a fibre reinforced composite in which the matrix is water reactive. Wood Sci. Technol. 6:157–161.CrossrefGoogle Scholar

  • Cave, I.D., Walker, J.C.F. (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Prod. J. 44:43.Google Scholar

  • Cousins, W.J. (1976) Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. 10:9–17.CrossrefGoogle Scholar

  • Cousins, W.J. (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci. Technol. 12:161–167.CrossrefGoogle Scholar

  • Gindl, W., Gupta, H.S., Schöberl, T., Lichtenegger H.C., Fratzl P. (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl. Phys. A-Mater. 79:2069–2073.CrossrefGoogle Scholar

  • Green, D.W., Link, C.L., DeBonis, A.L., McLain, T.E. (1986) Predicting the effect of moisture content on the flexural properties of southern pine dimension lumber. Wood Fiber Sci. 18:134–156.Google Scholar

  • Green, D.W., Evans, J.W., Barrett, J.D., Aplin, E.N. (2007) Predicting the effect of moisture content on the flexural properties of Douglas-fir dimension lumber. Wood Fiber Sci. 20:107–131.Google Scholar

  • Keckes, J., Burgert, I., Frühmann, K., Müller, M., Kölln, K., Hamilton, M., Burghammer, M., Roth, S.V., Tschegg, S.S., Fratzl, P. (2003) Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2:810–814.CrossrefGoogle Scholar

  • Koponen, S., Toratti, T., Kanerva, P. (1989) Modelling longitudinal elastic and shrinkage properties of wood. Wood Sci. Technol. 23:55–63.CrossrefGoogle Scholar

  • Kretschmann, D.E., Green, D.W. (1996). Modeling moisture content-mechanical property relationships for clear southern pine. Wood Fiber Sci. 28:320–337.Google Scholar

  • Kufner, M. (1978) Modulus of elasticity and tensile strength of wood species with different density and their dependence on moisture content. Eur. J. Wood Wood Prod. 36:435–439.CrossrefGoogle Scholar

  • Li, J.H., Hunt, J.F., Cai, Z.Y., Zhou, X.Y. (2013) Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric. Compos. Part B Eng. 53:17–24.Web of ScienceCrossrefGoogle Scholar

  • Li, J.H., Hunt, J.F., Gong, S.Q., Cai, Z.Y. (2014) High strength wood-based sandwich panels reinforced with fiberglass and foam. Bioresources 9:1898–1913.Google Scholar

  • Li, J.H., Hunt, J.F., Gong, S.Q., Cai, Z.Y. (2016) Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP). Holzforchung 70:567–575.Google Scholar

  • Lube, V., Lazarescu, C., Mansfield, S.D., Avramidis, S. (2016) Wood microfibril angle variation after drying. Holzforschung 70:485–488.Web of ScienceGoogle Scholar

  • Ma, X., Zhang, F., Wei, L. (2015) Effect of wood charcoal contents on the adsorption property, structure, and morphology of mesoporous activated carbon fibers derived from wood liquefaction process. J. Mater. Sci. 50:1908–1914.Web of ScienceCrossrefGoogle Scholar

  • Nakai, T., Yamamoto, H., Nakao, T., Hamatake, M. (2006) Mechanical behavior of the crystal lattice of natural cellulose in wood under repeated uniaxial tension stress in the fiber direction. Wood Sci. Technol. 40:683–695.CrossrefWeb of ScienceGoogle Scholar

  • Nanayakkara, B., Lagane, F., Hodgkiss, P., Dibley, M., Smaill, S., Riddell, M., Harrington, J., Cown, D. (2014) Effects of induced drought and tilting on biomass allocation, wood properties, compression wood formation and chemical composition of young Pinus radiata genotypes (clones). Holzforschung 68:455–465.Google Scholar

  • Ozyhar, T., Hering, S., Niemz, P. (2012) Moisture-dependent elastic and strength anisotropy of european beech wood in tension. J. Mater. Sci. 47:6141–6150.Web of ScienceCrossrefGoogle Scholar

  • Reiterer, A., Lichtenegger, H., Tschegg, S., Fratzl, P. (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos. Mag. A 79:2173–2184.CrossrefGoogle Scholar

  • Sakurada, I., Nukushima, Y., Ito, T. (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57:651–660.CrossrefGoogle Scholar

  • Salmén, L. The Cell Wall as a Composite Structure. Paper. Structure and Properties. Marcel Dekker, New York, 1986. pp. 51–73.Google Scholar

  • Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. COST action E35 2004 – 2008: wood machining – micromechanics and fracture. Holzforschung 63:121–129.Web of ScienceGoogle Scholar

  • Salmén, L., Kolseth, P., Rigdahl, M. (1986) Modelling of small-strain properties and environmental effects on paper and cellulosic fibers. Composite systems from natural and synthetic polymers. Mater. Sci. Monogr. 36:211–223.Google Scholar

  • Sharma, M., Altaner, C.M. (2014) Properties of young Araucaria heterophylla (Norfolk Island pine) reaction and normal wood. Holzforschung 68:817–821.Google Scholar

  • Shirai, T., Yamamoto, H., Matsuo, M., Inatsugu, M., Yoshida, M., Sato, S., Sujan, K.C., Suzuki, Y., Toyoshima, I., Yamashita, N. (2016) Negative gravitropism of Ginkgo biloba: growth stress and reaction wood formation. Holzforschung 70:267–274.Google Scholar

  • Stuart, S., Evans, R. (1994) X-ray diffraction estimation of the microfibril angle variation in eucalypt wood. Appita 48:197–200.Google Scholar

  • Tanaka, M., Yamamoto, H., Kojima, M., Arizono, T. (2014) The interrelation between microfibril angle (MFA) and hygrothermal recovery (HTR) in compression wood and normal wood of sugi and agathis. Holzforschung 68:823–830.Web of ScienceGoogle Scholar

  • Kamiyama, T., Suzuki, H., Sugiyama, J. (2005) Studies of the structural change during deformation in cryptonmeria japonica by time-resolved ssynchrotron small-angle X-ray scattering. J. Struc. Biol. 151:1–11.Google Scholar

  • Wang, S., Wang, H. (1999) Effects of moisture content and specific gravity on static bending properties and hardness of six wood species. Wood Sci. Technol. 45:127–133.CrossrefGoogle Scholar

  • Wang, H., Tian, G., Li, W., Ren, D., Zhang, X., Yu, Y. (2015) Sensitivity of bamboo fiber longitudinal tensile properties to moisture content variation under the fiber saturation point. J. Wood. Sci. 61:262–269.Web of ScienceCrossrefGoogle Scholar

  • Wei, L., McDonald, A.G. (2016) A review on grafting of biofibers for biocomposites. Materials 9:303.CrossrefWeb of ScienceGoogle Scholar

  • Wei, L., McDonald, A.G., Freitag, C., Morrell, J.J. (2013) Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym. Degrad. Stab. 98:1348–1361.CrossrefGoogle Scholar

  • Wei, L., Stark, N.M., McDonald, A.G. (2015) Interfacial improvements in biocomposites based on poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chem. 17:4800–4814.Web of ScienceCrossrefGoogle Scholar

  • Yu, Y., Fei, B., Wang, H., Tian, G. (2011) Longitudinal mechanical properties of cell wall of Masson pine (Pinus massoniana Lamb) as related to moisture content: a nanoindentation study. Holzforschung 65:121–126.Google Scholar

About the article

Received: 2016-08-30

Accepted: 2017-02-20

Published Online: 2017-03-25

Published in Print: 2017-06-27


Citation Information: Holzforschung, Volume 71, Issue 6, Pages 491–497, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0138.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in