Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 6

Issues

Influence of strain rate, temperature and fatigue on the radial compression behaviour of Norway spruce

Carolina Moilanen
  • Corresponding author
  • Mechanical Engineering and Industrial Systems, Tampere University of Technology, P.O. Box 589, FI-33101, Tampere, Finland, Phone: +358-40-198-1599
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomas Björkqvist
  • Automation and Hydraulic Engineering, Tampere University of Technology, P.O. Box 692, FI-33101, Tampere, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus Ovaska
  • Department of Applied Physics, School of Science, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juha Koivisto
  • Department of Applied Physics, School of Science, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amandine Miksic
  • Department of Applied Physics, School of Science, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Birgitta A. Engberg
  • Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, SE-85170, Sundsvall, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lauri I. Salminen / Pentti Saarenrinne
  • Mechanical Engineering and Industrial Systems, Tampere University of Technology, P.O. Box 589, FI-33101, Tampere, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mikko Alava
  • Department of Applied Physics, School of Science, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-07 | DOI: https://doi.org/10.1515/hf-2016-0144

Abstract

A dynamic elastoplastic compression model of Norway spruce for virtual computer optimization of mechanical pulping processes was developed. The empirical wood behaviour was fitted to a Voigt-Kelvin material model, which is based on quasi static compression and high strain rate compression tests (QSCT and HSRT, respectively) of wood at room temperature and at high temperature (80–100°C). The effect of wood fatigue was also included in the model. Wood compression stress-strain curves have an initial linear elastic region, a plateau region and a densification region. The latter was not reached in the HSRT. Earlywood (EW) and latewood (LW) contributions were considered separately. In the radial direction, the wood structure is layered and can well be modelled by serially loaded layers. The EW model was a two part linear model and the LW was modelled by a linear model, both with a strain rate dependent term. The model corresponds well to the measured values and this is the first compression model for EW and LW that is based on experiments under conditions close to those used in mechanical pulping.

Keywords: radial compression behaviour; dynamic modelling of defibration; earlywood; high strain rate test; latewood; moist Norway spruce; split-Hopkinson pressure bar; Voigt-Kelvin material model

References

  • Adalian, C., Morlier, P. (2001) A model for the behaviour of wood under dynamic multiaxial compression. Compos. Sci. Technol. 61:403–408.CrossrefGoogle Scholar

  • Becker, H., Höglund, H., Tistad, G. (1977) Frequency and temperature in chip refining. Paperi Puu. 59:123–126, 129–130.Google Scholar

  • Björkqvist, T. A design method for an efficient fatigue process in wood grinding – an analytical approach. Doctoral Thesis, Tampere University of Technology, Tampere, Finland, 2002.Google Scholar

  • Björkqvist, T., Lautala, P., Saharinen, E., Paulapuro, H., Koskenhely, K., Lönnberg, B. (1999) Behaviour of spruce sapwood in mechanical loading. J. Pulp Pap. Sci. 25:118–123.Google Scholar

  • Brabec, M., Tippner, J., Sebera, V., Milch, J., and Rademacher, P. (2015) Standard and non-standard behaviour of European beech and Norway spruce during compression. Holzforschung 69:1107–1116.Web of ScienceCrossrefGoogle Scholar

  • De Magistris, F. Wood fibre deformation in combined shear and compression. Doctoral Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2005.Google Scholar

  • Fernando, D., Muhic, D., Engstrand, P., Daniel, G. (2011) Fundamental understanding of pulp property development under different thermomechanical pulp refining conditions as observed by a new Simons’ staining method and SEM observation of the ultrastructure of fibre surfaces. Holzforschung 65:777–786.CrossrefWeb of ScienceGoogle Scholar

  • Gray III, G.T. (2000) Classic split-Hopkinson pressure bar testing. In: Vol 8 Mechanical Testing and Evaluation, ASM Handbook. ASM International. pp. 462–476.Google Scholar

  • Gray III, G.T., Blumenthal, W.R. (2000) Split-Hopkinson pressure bar testing of soft materials. In: Mechanical Testing and Evaluation, Vol 8, ASM Handbook. ASM International. pp. 488–496.Google Scholar

  • Hamad, W.Y., Provan, J.W. (1995) Microstructural cumulative material degradation and fatigue-failure micromechanisms in wood-pulp fibres. Cellulose 2:159–177.CrossrefGoogle Scholar

  • Hanhijärvi, A., Mackenzie-Helnwein, P. (2003) Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. Part I: Orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J. Eng. Mech. 129:996–1005.Google Scholar

  • Hickey, K.L., Rudie, A.W. (1993) Preferential Energy absorption by earlywood in cyclic compression of Loblolly pine. International Mechanical Pulping Conference June 15–17 Oslo, Norway: 81–86.Google Scholar

  • Holmgren, S., Svensson, B.A., Gradin, P.A., Lundberg, B. (2008) An encapsulated split Hopkinson pressure bar for testing of wood at elevated strain rate, temperature, and pressure. Exp. Tech. 32:44–50.Web of ScienceCrossrefGoogle Scholar

  • Höglund, H., Bäck, R., Falk, B. and Jackson, M. (1997): Thermopulp – A new energy-efficient mechanical pulping process. Pulp Paper Can. 98:82–89.Google Scholar

  • Isaksson, P., Gradin, P.A., Hellström, L.M. (2013) A numerical and experimental study regarding the influence of some process parameters on the damage state in wood chips. Holzforschung 67:691–696.Web of ScienceCrossrefGoogle Scholar

  • Kolsky, H. Stress Waves in Solids. Dover Publications Inc., New York, 1963.Google Scholar

  • Law, K.N., Kokta, B.V., Mao, C. (2006) Compression properties of wood and fibre failures. J. Pulp Pap. Sci. 32:224–230.Google Scholar

  • Lecourt, M., Meyer, V., Sigoillot, J.-C., Petit-Conil, M. (2010) Energy reduction of refining by cellulases. Holzforschung 64:441–446.Web of ScienceCrossrefGoogle Scholar

  • Li, X., Cai, Z., Horn, E., Winandy, J.E. (2011) Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard. Holzforschung 65:737–741.Web of ScienceCrossrefGoogle Scholar

  • Lucander, M., Asikainen, S., Pöhler, T., Saharinen, E., Björkqvist, T. (2009) Fatigue treatment of wood by high-frequency cyclic loading. J. Pulp Pap. Sci. 35:81–85.Google Scholar

  • Milch, J., Tippner, J., Sebera, V. and Brabec, M. (2016) Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses. Holzforschung 70:1081–1092.Web of ScienceCrossrefGoogle Scholar

  • Moilanen, C.S., Saarenrinne, P., Engberg, B.A., Björkqvist, T. (2015) Image based stress and strain measurement of wood in the split-Hopkinson pressure bar. Meas. Sci. Tech. 26:085206.CrossrefGoogle Scholar

  • Moilanen, C.S., Björkqvist, T., Engberg, B.A., Salminen, L.I., Saarenrinne, P. (2016) High strain rate radial compression of Norway spruce earlywood and latewood. Cellulose 23:873–889.CrossrefWeb of ScienceGoogle Scholar

  • Neimsuwan, T., Wang, S., Philip Ye, X. (2008) Effects of refining steam pressure on the properties of loblolly pine (Pinus taeda L.) fibers. Holzforschung 62:556–561.CrossrefGoogle Scholar

  • Renaud, M., Rueff, M., Rocaboy, A.C. (1996) Mechanical behaviour of saturated wood under compression Part 2: Behaviour of wood at low rates of strain some effects of compression on wood structure. Wood Sci. Technol. 30:237–243.CrossrefGoogle Scholar

  • Salmen, L. (1987) The Effect of the Frequency of a mechanical deformation on the fatigue of wood. J. Pulp. Pap. Sci. 13: 23–28.Google Scholar

  • Salmen, L., Tigerstrom, A., Fellers, C. (1985) Fatigue of wood - characterization of mechanical defibration. J. Pulp Pap. Sci. 11:68–73.Google Scholar

  • Salmén, L., Dumail, J.F., Uhmeier, A. (1997) Compression behaviour of wood in relation to mechanical pulping. International Mechanical Pulping Conference June 9–13, 1997, Stockholm, Sweden: 207–211.Google Scholar

  • Salmi, A., Salminen, L., Hæggström, E. (2009) Quantifying fatigue generated in high strain rate cyclic loading of Norway spruce. J. Appl. Phys. 106:104905Web of ScienceGoogle Scholar

  • Salmi, A., Saharinen, E., Hæggström, E. (2011) Layer-like fatigue is induced during mechanical pulping. Cellulose 18: 1423–1432.CrossrefWeb of ScienceGoogle Scholar

  • Salmi, A., Salminen, L.I., Lucander, M., Hæggström, E. (2012a) Significance of fatigue for mechanical defibration. Cellulose 19:575–579.CrossrefWeb of ScienceGoogle Scholar

  • Uhmeier, A., Salmén, L. (1996) Influence of strain rate and temperature on the radial compression behavior of wet spruce. J. Eng. Mater. Technol. Trans. ASME 118:289–294.CrossrefGoogle Scholar

  • Uhmeier, A., Morooka, T., Norimoto, M. (1998) Influence of thermal softening and degradation on the radial compression behavior of wet spruce. Holzforschung 52:77–81.CrossrefGoogle Scholar

  • Widehammar, S. (2002) A method for dispersive split Hopkinson pressure bar analysis applied to high strain rate testing of spruce wood. Doctoral Thesis, Uppsala University, Uppsala, Sweden.Google Scholar

  • Widehammar, S. (2004) Stress-strain relationships for spruce wood: Influence of strain rate, moisture content and loading direction. Exp. Mech. 44:44–48.CrossrefGoogle Scholar

  • Xing, C., Wang, S., Pharr, G.M., Groom, L.H. (2008) Effect of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy. Holzforschung 62:230–236.CrossrefGoogle Scholar

About the article

Received: 2016-09-08

Accepted: 2017-03-01

Published Online: 2017-04-07

Published in Print: 2017-06-27


Citation Information: Holzforschung, Volume 71, Issue 6, Pages 505–514, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0144.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Junfeng Wang, Xuan Wang, Tianyi Zhan, Yaoli Zhang, Chao Lv, Qian He, Lu Fang, and Xiaoning Lu
Construction and Building Materials, 2018, Volume 177, Page 83

Comments (0)

Please log in or register to comment.
Log in