Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 71, Issue 6


Determination of inorganic element distribution in the freeze-fixed stem of Al2(SO4)3-treated Hydrangea macrophylla by TOF-SIMS and ICP-AES

Peiming Zheng
  • Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
  • School of Life Science, Shandong University, Jinan, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takaaki Ito / Dan Aoki
  • Corresponding author
  • Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan, Phone: +81-52-789-4062, Fax: +81-52-789-4163
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saori Sato / Masato Yoshida / Yuzou Sano / Yasuyuki Matsushita / Kazuhiko Fukushima / Kumi Yoshida
  • Corresponding author
  • Graduate School of information Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan, Phone: +81-52-789-5638, Fax: +81-52-789-5638
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-30 | DOI: https://doi.org/10.1515/hf-2016-0149


To elucidate the effect of soil conditions on the in planta distribution of inorganic elements, an aluminium (Al)-tolerant plant, Hydrangea macrophylla, was cultivated with the addition of Al ion to soils. Freeze-dried stems from the plants were analysed by time-of-flight secondary ion mass spectrometry (dry-TOF-SIMS). Freeze-fixed stems of the plants were analysed by cryo-TOF-SIMS. The inorganic metal content was quantified by inductively coupled plasma atomic absorption spectrometry (ICP-AES). The dry- and cryo-TOF-SIMS mapping analyses showed that in the native sample, inorganic elements are mainly localised in the cortex and pith. Al-treatment [i.e. Al2(SO4)3 administration to the soil] altered the distribution and content of inorganic metals. The actual amount of inorganic elements quantified by ICP-AES showed that Al-treatment on the soil increased the amounts of Na, Mg, Al and Ca and decreased that of K in the stem. The secondary ion counts of inorganic elements in freeze-dried and -fixed samples, determined by dry-/cryo-TOF-SIMS measurements, showed similar variations as that observed with ICP-AES measurements. These results are interpreted as that Al-treatment altered the distribution and amount of inorganic elements in the stems of Al-tolerant H. macrophylla plants.

Keywords: aluminium tolerance; Hydrangea macrophylla; inductively coupled plasma atomic emission spectrometry (ICP-AES); inorganic element; time-of-flight secondary ion mass spectrometry (TOF-SIMS)


  • Aoki, D., Saito, K., Matsushita, Y., Fukushima, K. (2016a) Distribution of cell wall components by TOF-SIMS. In: Secondary Xylem Biology. Eds. Kimi, Y.S., Funada, R., Singh, A.P. Academic Press, New York. pp. 363–379.Google Scholar

  • Aoki, D., Hanaya, Y., Akita, T., Matsushita, Y., Yoshida, M., Kuroda, K., Yagami, S., Takama, R., Fukushima, K. (2016b) Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci Rep. 6:31525.Google Scholar

  • Aoki, D., Asai, R., Tomioka, R., Matsushita, Y., Asakura, H., Tabuchi, M., Fukushima, K. (2017) Translocation of 133Cs administered to Cryptomeria japonica wood. Sci. Total Environ. 584–585:88–95.Google Scholar

  • Famoso, A.N., Clark, R.T., Shaff, J.E., Craft, E., McCouch, S.R., Kochian, L.V. (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol. 153:1678–1691.Web of ScienceGoogle Scholar

  • Franceschi, V.R., Nakata, P.A. (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol. 56:41–71.Web of ScienceGoogle Scholar

  • Hajiboland, R., Rad, S.B., Barceló, J., Poschenrieder, C. (2013) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J. Plant Nutr. Soil Sci. 176:616–625.Web of ScienceGoogle Scholar

  • Heide, P. (2014) Principles. In: Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices. Eds. Heide, P. John Wiley & Sons, Inc., Hoboken, NJ. pp. 23–138.Google Scholar

  • Horst, W.J. (1995) The role of the apoplast in Aluminum toxicity and resistance of higher-plants: A review. Z. Pflanz. Bodenkunde 158:419–428.Google Scholar

  • Iijima, M., Yoshida, T., Kato, T., Kawasaki, M., Watanabe, T., Somasundaram, S. (2011) Visualization of lateral water transport pathways in soybean by a time of flight-secondary ion mass spectrometry cryo-system. J. Exp. Bot. 62:179–2188.Web of ScienceGoogle Scholar

  • Ito, D., Shinkai, Y., Kato, Y., Kondo, T., Yoshida, K. (2009) Chemical studies on different color development in blue- and red-colored sepal cells of Hydrangea macrophylla. Biosci. Biotech. Biochem. 73:1054–1059.Google Scholar

  • Jyske, T., Kuroda, K., Suuronen, J.P., Pranovich, A., Roig-Juan, S., Aoki, D., Fukushima, K. (2016) In planta localization of stilbenes within Picea abies phloem. Plant Physiol. 172:913–928.Google Scholar

  • Kawamoto, T., Kawamoto, K. (2014) Preparation of thin frozen sections from nonfixed and undecalcifled hard tissues using Kawamoto’s Film Method (2012). In: Skeletal Development and Repair: Methods and Protocols. Ed. Hilton, M.J. Human Press, Springer Science+Business Media, New York, NY. pp. 149–164.Google Scholar

  • Kochian, L.V., Hoekenga, O.A., Pineros, M.A. (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55:59–493.Google Scholar

  • Kochian, L.V. (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Phys. 46:237–260.Google Scholar

  • Kuroda, K., Fujiwara, T., Imai, T., Takama, R., Saito, K., Matsushita, Y., Fukushima, K. (2013) The cryo-TOF-SIMS/SEM system for the analysis of the chemical distribution in freeze-fixed Cryptomeria japonica wood. Surf. Interface Anal. 45:215–219.Google Scholar

  • Ma, J.F. (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol. 264:225–252.Google Scholar

  • Ma, J.F., Hiradate, S., Nomoto, K., Iwashita, T., Matsumoto, H. (1997) Internal detoxification mechanism of AI in hydrangea. Plant Physiol. 113:1033–1039.Google Scholar

  • Ma, J.F., Ryan, P.R., Delhaize, M. (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6:273–278.Google Scholar

  • Maacz, G.J., Vagas, E. (1961) A new method for staining of cellulose and lignified cell-walls. Mikroskopie 16:40–43.Google Scholar

  • Martin, R.R., Naftel, S.J., Macfie, S., Skinner, W., Courchesne, F., Seguin, V. (2004) Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil. Chemosphere 54:1121–1125.Google Scholar

  • Masumi, T., Matsushita, Y., Aoki, D., Takama, R., Saito, K., Kuroda, K., Fukushima, K. (2014) Adsorption behavior of poly (dimethyl-diallylammonium chloride) on pulp fiber studied by cryo time-of-flight secondary ion mass spectrometry and cryo-scanning electron microscopy. Appl. Surf. Sci. 289:155–159.Web of ScienceGoogle Scholar

  • Matsumoto, H. (2000) Cell biology of aluminum toxicity and tolerance in higher plants, Int. Rev. Cytol. 200:1–46.Google Scholar

  • Matsunaka, T. (2004) Dojougaku no Kiso. Nousangyoson Bunka Kyokai, Tokyo. pp. 136–139 (In Japanese).Google Scholar

  • Metzner, R., Schneider, H.U., Breuer, U., Schroeder, W.H. (2008) Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy. Plant Physiol. 147:1774–1787.Web of ScienceGoogle Scholar

  • Metzner, R., Schneider, H.U., Breuer, U., Thorpe, M.R., Shurr, U., Shroeder, W.H. (2010a) Tracing cationic nutrients from xylem into stem tissue of French bean by stable isotope tracers and cryo-secondary ion mass spectrometry. Plant Physiol. 152:1030–1043.Web of ScienceGoogle Scholar

  • Metzner, R., Thorpe, M.R., Breuer, U., Blümler, P., Shurr, U., Schneider, H.U., Schroeder, W.H. (2010b) Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. Plant Cell Environ. 33:1393–1407.Web of ScienceGoogle Scholar

  • Mori, M., Miki, N., Ito, D., Kondo, T., Yoshida, K. (2014) Structure of tecophilin, a tri-caffeoylanthocyanin from the blue petals of Tecophilaea cyanocrocus, and the mechanism of blue color development. Tetrahedron 70:8657–8664.Google Scholar

  • Negishi, T., Oshima, K., Hattori, M., Kanai, M., Mano, S., Nishimura, M., Yoshida, K. (2012) Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One 7:e43189.Google Scholar

  • Negishi, T., Oshima, K., Hattori, M., Yoshida, K. (2013) Plasma membrane-localized Al-transporter from blue hydrangea sepals is a member of the anion permease family. Genes Cells 18:341–352.Web of ScienceGoogle Scholar

  • O’Brien, T.P., Feder, N., McCully, M.E. (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373.Google Scholar

  • Rout, G.R., Samantaray, S., Das, P. (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21.Google Scholar

  • Rufty, T.W., Mackown, C.T., Lazof, D.B., Carter, T.E. (1995) Effects of aluminum on nitrate uptake and assimilation. Plant Cell Environ. 18:1325–1331.Google Scholar

  • Saito, K., Mitsutani, T., Imai, T., Matsushita, Y., Yamamoto, A., Fukushima, K. (2008) Chemical differences between sapwood and heartwood of Chamaecyparis obtuse detected by ToF-SIMS. Appl. Surf. Sci. 255:1088–1091.Google Scholar

  • Saito, K., Watanabe, Y., Matsushita, Y., Imai, T., Koike, T., Sano, Y., Funada, R., Fukazawa, K., Fukushima, K. (2014) Aluminum localization in the cell walls of the mature xylem of maple tree detected by elemental imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Holzforschung 68:85–92.Web of ScienceGoogle Scholar

  • Samac, D.A., Tesfaye, M. (2003) Plant improvement for tolerance to aluminum in acid soils: A review. Plant Cell Tiss. Org. 75:189–207.Google Scholar

  • Schmitt, M., Boras, S., Tjoa, A., Watanabe, T., Jansen, S. (2016) Aluminium accumulation and intra-tree distribution patterns in three Arbor aluminosa (Symplocos) species from central Sulawesi. PLoS One 11:e0149078.Google Scholar

  • Shen, R.F., Chen, R.F., Ma, J.F. (2006) Buckwheat accumulates aluminum in leaves but not in seeds. Plant Soil 284:265–271.Google Scholar

  • Siegel, N. (1985) Aluminum interaction with biomolecules: the molecular basis for aluminum toxicity. Am. J. Kidney Dis. 6:353–357.Google Scholar

  • Tokareva, E.N., Pranovich, A.V., Fardim, P., Daniel, G., Holbom, B. (2007) Analysis of wood tissues by time-of-flight secondary ion mass spectrometry. Holzforschung 61:647–655.Web of ScienceGoogle Scholar

  • Toyama-Kato, Y., Yoshida, K., Fujimori, E., Haraguchi, H., Shimizu, Y., Kondo, T. (2003) Analysis of metal elements of hydrangea sepals at various growing stages by ICP-AES. Biochem. Eng. J. 14:237–241.Google Scholar

  • Tyler, B.J., Rangaranjan, S., Moller, J., Beumer, A., Arlinghaus, H.F. (2006) TOF-SIMS imaging of chlorhexidine-digluconate transport in frozen hydrated biofilms of the fungus Candida albicans. Appl. Surf. Sci. 252:6712–6715.Google Scholar

  • Vickerman, J.C., Briggs, D. TOF-SIMS: Surface analysis by Mass Spectrometry. IM Publications and Surface Spectra Limited, West Sussex, U.K, 2001.Google Scholar

  • Vonuexkull, H.R., Mutert, E. 1995. Global extent, development and economic-impact of acid soils. Plant Soil 171:1–15.Google Scholar

  • Watanabe, T., Misawa, S., Hiradate, S., Osaki, M. (2008a) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal. Behav. 3:603–605.Google Scholar

  • Watanabe, T., Misawa, S., Hiradate, S., Osaki, M. (2008b) Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation. N. Phytol. 178:581–589.Google Scholar

  • Yoshida, K., Negishi, T. (2013) The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. Phytochemistry 94:60–67.Web of ScienceGoogle Scholar

  • Zheng, P., Aoki, D., Yoshida, M., Matsushita, Y., Imai, T., Fukushima, K. (2014a) Lignification of ray parenchyma cells in xylem of Pinus densiflora. Part I: Microscopic investigation by POM, UV microscopy, and TOF-SIMS. Holzforschung 68:897–905.Google Scholar

  • Zheng, P., Aoki, D., Matsushita, Y., Yagami, S., Fukushima, K. (2014b) Lignification of ray parenchyma cells in the xylem of Pinus densiflora. Part II: Microchemical analysis by laser microdissection and thioacidolysis. Holzforschung 68: 907–913.Google Scholar

  • Zheng, P., Aoki, D., Matsushita,Y., Yagami, S., Sano, Y., Yoshida, M., Fukushima, K. (2016) Lignification of ray parenchyma cells (RPCs) in the xylem of Phellodendron amurense Rupr.: quantitative and structural investigation by TOFSIMS and thioacidolysis of laser microdissection cuts of RPCs. Holzforschung 70:641–652.Google Scholar

About the article

Received: 2016-09-14

Accepted: 2017-02-27

Published Online: 2017-03-30

Published in Print: 2017-06-27

Citation Information: Holzforschung, Volume 71, Issue 6, Pages 471–480, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0149.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in