Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 71, Issue 6


NMR determination of sorption isotherms in earlywood and latewood of Douglas fir. Identification of bound water components related to their local environment

Marie Bonnet
  • Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, IFSTTAR, CNRS, UPE, Marne-la-Vallée, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denis Courtier-Murias
  • Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, IFSTTAR, CNRS, UPE, Marne-la-Vallée, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paméla Faure
  • Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, IFSTTAR, CNRS, UPE, Marne-la-Vallée, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stéphane Rodts
  • Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, IFSTTAR, CNRS, UPE, Marne-la-Vallée, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabine Care
  • Corresponding author
  • Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, IFSTTAR, CNRS, UPE, Marne-la-Vallée, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-28 | DOI: https://doi.org/10.1515/hf-2016-0152


Earlywood (EW) and latewood (LW) have different hygromechanical behaviors, if subjected to relative humidity (RH) variations. To understand this effect better, the adsorption mechanisms of EW and LW of Douglas fir were studied by 2D 1H NMR relaxometry under conditions of equilibrium moisture content (EMC) at 20°C. Two bound water components were detected with relaxation times T1 and T2 indicating that they are located in distinct environments but these are similar in EW and LW. Sorption isotherms were calculated and analyzed based on the sorption model of Dent. A difference of sorption energy between the two water components is in agreement with their mobility difference observed on T1−T2 correlation spectra. Moreover, for the two bound water components, EW and LW exhibit different sorption isotherms at high RH. This may be attributed to a difference of adsorption capacity. Based on the macrofibril models provided by the literature, the following hypothesis is proposed: bound water components are located in lamellar and lenticular areas, both leading to possible deformations.

Keywords: 2D NMR relaxometry; 2D T1−T2 correlation spectra; earlywood; hemicelluloses; latewood; macrofibril; sorption isotherms


  • Abragam, A. The Principles of Nuclear Magnetism. Clarendon Press, Oxford, 1961.Google Scholar

  • Almeida, G., Gagné, S., Hernandez, R.E. (2007) A NMR study of water distribution in hardwoods at several equilibrium moisture contents. Wood Sci. Technol. 41:293–307.CrossrefWeb of ScienceGoogle Scholar

  • Almeida, G., Huber, F., Perré, P. (2014) Free shrinkage of wood determined at the cellular level using an environmental scanning electron microscope. Maderas-Cienc. Tecnol. 16:187–198.Web of ScienceGoogle Scholar

  • Araujo, C.D., MacKay, A.L., Hailey, J.R.T., Whittall, K.P., Le, H. (1992) Proton magnetic resonance techniques for characterization of water in wood: application to white spruce. Wood Sci. Technol. 26:101–113.CrossrefGoogle Scholar

  • Araujo, C.D., Avramidis, S., MacKay, A.L. (1994) Behaviour of solid wood and bound water as a function of moisture content: a proton magnetic resonance study. Holzforschung 48:69–74.CrossrefGoogle Scholar

  • Boyd, J.D. (1982) An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on stregth. In: New Perspectives in Wood Anatomy, Eds. Martinus Nijhoff. Dr. W. Junk Publishers, La Hague. pp. 171–222.Google Scholar

  • Brown, R.J.S. (1989) Information available and unavailable from multiexponential relaxation data. J. Magn. Reson. 82:539–561.Google Scholar

  • Brunauer, S., Emmett, P.H., Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309–319.CrossrefGoogle Scholar

  • Brunauer, S., Deming, L.S., Deming, W.E., Teller, E. (1940) On a theory of the Van der Waals adsorption of gases. J. Am. Chem. Soc. 62:1723–1732.CrossrefGoogle Scholar

  • Butler, J.P., Reeds, J.A., Dawson, S.V. (1981) Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J. Numer. Anal. 18:381–397.CrossrefGoogle Scholar

  • Bytchenkoff, D., Rodts, S. (2011) Structure of the two-dimensional relaxation spectra seen within the eigenmode perturbation theory and the two-site exchange model. J. Magn. Reson. 208:4–19.Web of ScienceCrossrefGoogle Scholar

  • Care, S., Lenoir, N., Bertrand, F., Bornert, M. (2013) Microstructural and multiscale characterization of wood subjected to humidity by X-ray microtomography and magnetic resonance imaging. ICTMS Conference, Ghent, Belgium, p. 4.Google Scholar

  • Carr, H.Y., Purcell, E.M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630–638.CrossrefGoogle Scholar

  • Cox, J., McDonald, P.J., Gardiner, B.A. (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266.CrossrefWeb of ScienceGoogle Scholar

  • Dent, R.W. (1977) A multilayer theory for gas sorption. Part I: sorption of a single gas. Text. Res. J. 47:145–152.CrossrefGoogle Scholar

  • Donaldson, L. (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci. Technol. 41:443–460.Web of ScienceCrossrefGoogle Scholar

  • D’Orazio, F., Bhattacharja, S., Halperin, W., Gerhardt, R. (1989) Enhanced self-diffusion of water in restricted geometry. Phys. Rev. Lett. 63:43–46.CrossrefGoogle Scholar

  • D’Orazio, F., Bhattacharja, S., Halperin, W.P., Eguchi, K., Mizusaki, T. (1990) Molecular diffusion and nuclear-magnetic-resonance relaxation of water in unsaturated porous silica glass. Phys. Rev. B 42:9810–9818.CrossrefGoogle Scholar

  • Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. (2013) A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 47:141–161.CrossrefWeb of ScienceGoogle Scholar

  • English, A.E., Whittall, K.P., Joy, M.L.G., Henkelman, R. (1991) Quantitative two-dimensional time correlation relaxometry. Magn. Reson. Med. 22:425–434.CrossrefGoogle Scholar

  • Faure, P., Rodts, S. (2008) Proton NMR relaxation as a probe for setting cement pastes. Magn. Reson. Imaging 26:1183–1196.CrossrefWeb of ScienceGoogle Scholar

  • Faure, P., Caré, S., Po, C., Rodts, S. (2005) An MRI-SPI and NMR relaxation study of drying-hydration coupling effect on microstructure of cement-based materials at early age. Magn. Reson. Imaging 23:311–314.CrossrefGoogle Scholar

  • Faure, P., Peter, U., Lesueur, D., Coussot, P. (2012) Water transfers within hemp lime concrete followed by NMR. Cement Concrete Res. 42:1468–1474.Web of ScienceCrossrefGoogle Scholar

  • Fourmentin, M. (2015) Impact de la répartition et des transferts d’eau sur les propriétés des matériaux de construction à base de chaux formulées. PhD thesis: Université Paris-Est, France.Google Scholar

  • Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. J. Res. Nbs. A Phys. Ch. 81A:89–96.CrossrefGoogle Scholar

  • Gril, J. (1988) Une modélisation du comportement hydro-rhéologique du bois à partir de sa microstructure. PhD thesis: Université Pierre et Marie Curie (Paris 6), France.Google Scholar

  • Hahn, E.L. (1949) An accurate nuclear magnetic resonance method for measuring spin-lattice relaxation times. Phys. Rev. 76:145–147.CrossrefGoogle Scholar

  • Hailwood, A.J., Horrobin, S. (1946) Absorption of water by polymers. Analysis in terms of a simple model. Trans. Far. Soc. 42B:84–102.CrossrefGoogle Scholar

  • Hill, C.A.S., Ramsay, J., Gardiner, B. (2015) Variability in water vapour sorption isotherm in Japanese Larch (Larix kaempferi Lamb.) – earlywood and latewood influences. Int. Wood Prod. J. 6:53–59.Google Scholar

  • Hunt, D.G. (1990) Longitudinal shrinkage-moisture relations in softwood. J. Mater. Sci. 25:3671–3676.CrossrefGoogle Scholar

  • Javed, M.A., Kekkonen, P.M., Ahola, S., Telkki, V.-V. (2015) Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung 69:899–907.Web of ScienceCrossrefGoogle Scholar

  • Kulasinski, K., Guyer, R., Derome, D., Carmeliet, J. (2015) Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous surface. Biomacromolecules 16:2972–2978.CrossrefGoogle Scholar

  • Labbé, N., De Jéso, B.D., Lartigue, J.-C., Daudé, G., Pétraud, M., Ratier, M. (2002) Moisture content and extractive materials in maritime pine wood by low field 1H NMR. Holzforschung 56:25–31.CrossrefGoogle Scholar

  • Meiboom, S., Gill, D. (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–691.CrossrefGoogle Scholar

  • Meier, H., Wilkie, K.C.B. (1959) The distribution of polysaccharides in the cell-wall of tracheids of pine (Pinus silvestris L.). Holzforschung 13:177–182.CrossrefGoogle Scholar

  • Menon, R.S., MacKay, A.L., Hailey, J.R.T., Bloom, M., Burgess, A.E., Swanson, J.S. (1987) An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polym. Sci. 33:1141–1155.CrossrefGoogle Scholar

  • Porion, P., Faugère, A.M., Levitz, P., Van Damme, H., Raoof, A., Guilbaud, J.-P., Chevoir, F. (1998) A NMR investigation of adsorption/desorption hysteresis in porous silica gels. Magn. Reson. Imaging 16:679–682.CrossrefGoogle Scholar

  • Rodts, S., Bytchenkoff, D. (2010) Structural properties of 2D NMR relaxation spectra of diffusive systems. J. Magn. Reson. 205:315–318.Web of ScienceGoogle Scholar

  • Salmén, L. (2015) Wood morphology and properties from molecular perspectives. Ann. For. Sci. 72:679–684.CrossrefWeb of ScienceGoogle Scholar

  • Salmén, L., Burgert I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.Google Scholar

  • Sasaki, M., Kawai, T., Hirai, A., Hashi, T., Odajima, A. (1960) A study of sorbed water on cellulose by pulsed NMR technique. J. Phys. Soc. Jpn. 15:1652–1657.CrossrefGoogle Scholar

  • Sharp, A.R., Riggin, M.T., Kaiser, R, Schneider, M.H.. (1978) Determination of moisture content of wood by pulsed nuclear magnetic resonance. Wood Fiber Sci. 10:74–81.Google Scholar

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemeneawska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603–619.CrossrefGoogle Scholar

  • Skaar, C. Wood-Water Relations. Springer-Verlag, Berlin, 1988.Google Scholar

  • Song, Y.Q., Venkataramanan, L., Hürlimann, M.D., Flaum, M., Frulla, P., Straley, C. (2002) T1-T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154:261–268.CrossrefGoogle Scholar

  • Telkki, V.-V., Yliniemi, M., Jokisaari, J. (2013) Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung 67:291–300.Web of ScienceCrossrefGoogle Scholar

  • Vittadini, E., Dickinson, L.C., Chinachoti, P. (2001) 1H and 2H NMR mobility in cellulose. Carbohyd. Polym. 46:49–57.CrossrefGoogle Scholar

  • Whittall, K.P., MacKay, A.L. (1989) Quantitative interpretation of NMR relaxation data. J. Magn. Reson. 84:134–152.Google Scholar

  • Willems, W. (2015) A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69:67–75.Web of ScienceGoogle Scholar

  • Winston, P.W., Bates, D.H. (1960) Saturated solutions for the control of humidity in biological research. Ecology 41:232–237.CrossrefGoogle Scholar

About the article

Received: 2016-09-15

Accepted: 2017-02-15

Published Online: 2017-03-28

Published in Print: 2017-06-27

Citation Information: Holzforschung, Volume 71, Issue 6, Pages 481–490, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0152.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tina Jeoh, Nardrapee Karuna, Noah D. Weiss, and Lisbeth G. Thygesen
ACS Sustainable Chemistry & Engineering, 2017

Comments (0)

Please log in or register to comment.
Log in