Abragam, A. The Principles of Nuclear Magnetism. Clarendon Press, Oxford, 1961.Google Scholar

Almeida, G., Gagné, S., Hernandez, R.E. (2007) A NMR study of water distribution in hardwoods at several equilibrium moisture contents. Wood Sci. Technol. 41:293–307.CrossrefWeb of ScienceGoogle Scholar

Almeida, G., Huber, F., Perré, P. (2014) Free shrinkage of wood determined at the cellular level using an environmental scanning electron microscope. Maderas-Cienc. Tecnol. 16:187–198.Web of ScienceGoogle Scholar

Araujo, C.D., MacKay, A.L., Hailey, J.R.T., Whittall, K.P., Le, H. (1992) Proton magnetic resonance techniques for characterization of water in wood: application to white spruce. Wood Sci. Technol. 26:101–113.CrossrefGoogle Scholar

Araujo, C.D., Avramidis, S., MacKay, A.L. (1994) Behaviour of solid wood and bound water as a function of moisture content: a proton magnetic resonance study. Holzforschung 48:69–74.CrossrefGoogle Scholar

Boyd, J.D. (1982) An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on stregth. In: New Perspectives in Wood Anatomy, Eds. Martinus Nijhoff. Dr. W. Junk Publishers, La Hague. pp. 171–222.Google Scholar

Brown, R.J.S. (1989) Information available and unavailable from multiexponential relaxation data. J. Magn. Reson. 82:539–561.Google Scholar

Brunauer, S., Emmett, P.H., Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309–319.CrossrefGoogle Scholar

Brunauer, S., Deming, L.S., Deming, W.E., Teller, E. (1940) On a theory of the Van der Waals adsorption of gases. J. Am. Chem. Soc. 62:1723–1732.CrossrefGoogle Scholar

Butler, J.P., Reeds, J.A., Dawson, S.V. (1981) Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J. Numer. Anal. 18:381–397.CrossrefGoogle Scholar

Bytchenkoff, D., Rodts, S. (2011) Structure of the two-dimensional relaxation spectra seen within the eigenmode perturbation theory and the two-site exchange model. J. Magn. Reson. 208:4–19.Web of ScienceCrossrefGoogle Scholar

Care, S., Lenoir, N., Bertrand, F., Bornert, M. (2013) Microstructural and multiscale characterization of wood subjected to humidity by X-ray microtomography and magnetic resonance imaging. ICTMS Conference, Ghent, Belgium, p. 4.Google Scholar

Carr, H.Y., Purcell, E.M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630–638.CrossrefGoogle Scholar

Cox, J., McDonald, P.J., Gardiner, B.A. (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266.CrossrefWeb of ScienceGoogle Scholar

Dent, R.W. (1977) A multilayer theory for gas sorption. Part I: sorption of a single gas. Text. Res. J. 47:145–152.CrossrefGoogle Scholar

Donaldson, L. (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci. Technol. 41:443–460.Web of ScienceCrossrefGoogle Scholar

D’Orazio, F., Bhattacharja, S., Halperin, W., Gerhardt, R. (1989) Enhanced self-diffusion of water in restricted geometry. Phys. Rev. Lett. 63:43–46.CrossrefGoogle Scholar

D’Orazio, F., Bhattacharja, S., Halperin, W.P., Eguchi, K., Mizusaki, T. (1990) Molecular diffusion and nuclear-magnetic-resonance relaxation of water in unsaturated porous silica glass. Phys. Rev. B 42:9810–9818.CrossrefGoogle Scholar

Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. (2013) A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 47:141–161.CrossrefWeb of ScienceGoogle Scholar

English, A.E., Whittall, K.P., Joy, M.L.G., Henkelman, R. (1991) Quantitative two-dimensional time correlation relaxometry. Magn. Reson. Med. 22:425–434.CrossrefGoogle Scholar

Faure, P., Rodts, S. (2008) Proton NMR relaxation as a probe for setting cement pastes. Magn. Reson. Imaging 26:1183–1196.CrossrefWeb of ScienceGoogle Scholar

Faure, P., Caré, S., Po, C., Rodts, S. (2005) An MRI-SPI and NMR relaxation study of drying-hydration coupling effect on microstructure of cement-based materials at early age. Magn. Reson. Imaging 23:311–314.CrossrefGoogle Scholar

Faure, P., Peter, U., Lesueur, D., Coussot, P. (2012) Water transfers within hemp lime concrete followed by NMR. Cement Concrete Res. 42:1468–1474.Web of ScienceCrossrefGoogle Scholar

Fourmentin, M. (2015) Impact de la répartition et des transferts d’eau sur les propriétés des matériaux de construction à base de chaux formulées. PhD thesis: Université Paris-Est, France.Google Scholar

Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. J. Res. Nbs. A Phys. Ch. 81A:89–96.CrossrefGoogle Scholar

Gril, J. (1988) Une modélisation du comportement hydro-rhéologique du bois à partir de sa microstructure. PhD thesis: Université Pierre et Marie Curie (Paris 6), France.Google Scholar

Hahn, E.L. (1949) An accurate nuclear magnetic resonance method for measuring spin-lattice relaxation times. Phys. Rev. 76:145–147.CrossrefGoogle Scholar

Hailwood, A.J., Horrobin, S. (1946) Absorption of water by polymers. Analysis in terms of a simple model. Trans. Far. Soc. 42B:84–102.CrossrefGoogle Scholar

Hill, C.A.S., Ramsay, J., Gardiner, B. (2015) Variability in water vapour sorption isotherm in Japanese Larch (Larix kaempferi Lamb.) – earlywood and latewood influences. Int. Wood Prod. J. 6:53–59.Google Scholar

Hunt, D.G. (1990) Longitudinal shrinkage-moisture relations in softwood. J. Mater. Sci. 25:3671–3676.CrossrefGoogle Scholar

Javed, M.A., Kekkonen, P.M., Ahola, S., Telkki, V.-V. (2015) Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung 69:899–907.Web of ScienceCrossrefGoogle Scholar

Kulasinski, K., Guyer, R., Derome, D., Carmeliet, J. (2015) Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous surface. Biomacromolecules 16:2972–2978.CrossrefGoogle Scholar

Labbé, N., De Jéso, B.D., Lartigue, J.-C., Daudé, G., Pétraud, M., Ratier, M. (2002) Moisture content and extractive materials in maritime pine wood by low field 1H NMR. Holzforschung 56:25–31.CrossrefGoogle Scholar

Meiboom, S., Gill, D. (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–691.CrossrefGoogle Scholar

Meier, H., Wilkie, K.C.B. (1959) The distribution of polysaccharides in the cell-wall of tracheids of pine (*Pinus silvestris* L.). Holzforschung 13:177–182.CrossrefGoogle Scholar

Menon, R.S., MacKay, A.L., Hailey, J.R.T., Bloom, M., Burgess, A.E., Swanson, J.S. (1987) An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polym. Sci. 33:1141–1155.CrossrefGoogle Scholar

Porion, P., Faugère, A.M., Levitz, P., Van Damme, H., Raoof, A., Guilbaud, J.-P., Chevoir, F. (1998) A NMR investigation of adsorption/desorption hysteresis in porous silica gels. Magn. Reson. Imaging 16:679–682.CrossrefGoogle Scholar

Rodts, S., Bytchenkoff, D. (2010) Structural properties of 2D NMR relaxation spectra of diffusive systems. J. Magn. Reson. 205:315–318.Web of ScienceGoogle Scholar

Salmén, L. (2015) Wood morphology and properties from molecular perspectives. Ann. For. Sci. 72:679–684.CrossrefWeb of ScienceGoogle Scholar

Salmén, L., Burgert I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.Google Scholar

Sasaki, M., Kawai, T., Hirai, A., Hashi, T., Odajima, A. (1960) A study of sorbed water on cellulose by pulsed NMR technique. J. Phys. Soc. Jpn. 15:1652–1657.CrossrefGoogle Scholar

Sharp, A.R., Riggin, M.T., Kaiser, R, Schneider, M.H.. (1978) Determination of moisture content of wood by pulsed nuclear magnetic resonance. Wood Fiber Sci. 10:74–81.Google Scholar

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemeneawska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603–619.CrossrefGoogle Scholar

Skaar, C. Wood-Water Relations. Springer-Verlag, Berlin, 1988.Google Scholar

Song, Y.Q., Venkataramanan, L., Hürlimann, M.D., Flaum, M., Frulla, P., Straley, C. (2002) T1-T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154:261–268.CrossrefGoogle Scholar

Telkki, V.-V., Yliniemi, M., Jokisaari, J. (2013) Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung 67:291–300.Web of ScienceCrossrefGoogle Scholar

Vittadini, E., Dickinson, L.C., Chinachoti, P. (2001) ^{1}H and ^{2}H NMR mobility in cellulose. Carbohyd. Polym. 46:49–57.CrossrefGoogle Scholar

Whittall, K.P., MacKay, A.L. (1989) Quantitative interpretation of NMR relaxation data. J. Magn. Reson. 84:134–152.Google Scholar

Willems, W. (2015) A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69:67–75.Web of ScienceGoogle Scholar

Winston, P.W., Bates, D.H. (1960) Saturated solutions for the control of humidity in biological research. Ecology 41:232–237.CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.