Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 71, Issue 6


Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood

Tao Li
  • Corresponding author
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jia-bin Cai
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stavros Avramidis / Da-li Cheng
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magnus E.P. Wålinder
  • Division of Building Materials, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ding-guo Zhou
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-07 | DOI: https://doi.org/10.1515/hf-2016-0178


Poplar wood was modified by a combination of thermo-mechanical densification (TMD) and heat treatment (HT) process at five temperatures ranging from 170 to 210°C. A new two-step conditioning method (CM) is suggested, in the course of which the modified wood is submitted to 50°C/99% RH→25°C/65% RH, where RH means relative humidity in the climate chamber. The traditional one-step CM (25°C/65% RH) served as reference. The effects of conditioning history on hardness were observed and analyzed along with the change of dimensional stability. The hardness of the modified wood was lower in the case of the proposed CM due to more set-recovery release, but the extent of that decreased with the HT temperature. For a good hardness, HT200°C should be selected with the proposed CM, which is different from the optimization output of 180°C obtained from the traditional CM. In conclusion, a specific assessment method for the performance characterization of this type of modified wood would be beneficial for the combined TMD and HT processes.

Keywords: conditioning history; hardness; heat treatment; poplar wood; set-recovery; thermo-mechanical densification; two-step conditioning


  • Cai, J., Yang, X., Cai, L., Shi, S.Q. (2013) Impact of the combination of densification and thermal modification on dimensional stability and hardness of poplar lumber. Dry. Technol. 31:1107–1113.CrossrefWeb of ScienceGoogle Scholar

  • de Assis, A.A., Alexandre, R.P., Ballarin, A.W. (2017) Dynamic hardness of wood – measurements with an automated portable hardness tester. Holzforschung. DOI: https://doi.org/10.1515/hf-2016-0137. Published Online: 01/25/2017.Crossref

  • Esteves, B., Pereira, H. (2009) Wood modification by heat treatment: a review. BioResources 4:370–404.Google Scholar

  • Gong, M., Lamason, C., Li, L. (2010) Interactive effect of surface densification and post-heat- treatment on aspen wood. J. Mater. Process. Tech. 210:293–296.Web of ScienceGoogle Scholar

  • Hamzeh, Y., Sabbaghi, S., Ashori, A., Abdulkhani, A., Soltani, F. (2013) Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers. Carbohydr. Polym. 94:577–583.Web of ScienceCrossrefGoogle Scholar

  • Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd., Chichester, 2006.Google Scholar

  • Hillis, W.E., Rozsa, A.N. (1978) The softening temperature of wood. Holzforschung 32:68–73.CrossrefGoogle Scholar

  • Inoue, M., Norimoto, M., Tanahashi, M., Rowell, R.M. (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci. 25:224–235.Google Scholar

  • Kutnar, A, Kamke, F.A. (2012) Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci. Technol. 46, 953–964.CrossrefWeb of ScienceGoogle Scholar

  • Kutnar, A., Sandberg, D., Haller, P. (2015) Compressed and moulded wood from processing to products. Holzforschung 69: 885–897.Web of ScienceCrossrefGoogle Scholar

  • Laine, K., Rautkari, L., Hughes, M., Kutnar, A. (2013) Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur. J. Wood Prod. 71:17–23.CrossrefWeb of ScienceGoogle Scholar

  • Li, T., Cai, J.B., Zhou, D.G. (2013) Optimization of the combined modification process of thermo-mechanical densification and heat treatment on Chinese fir wood. BioResources 8:5279–5288.Google Scholar

  • Li, T., Cheng, D.L., Wålinder, M.E.P., Zhou, D.G. (2015) Wettability of oil heat-treated bamboo and bonding strength of laminated bamboo board. Ind. Crop Prod. 69:15–20.Web of ScienceCrossrefGoogle Scholar

  • Luo, J., Luo, J., Gao, Q., Li, J. (2015) Effects of heat treatment on wet shear strength of plywood bonded with soybean meal-based adhesive. Ind. Crop Prod. 63:281–286.Web of ScienceCrossrefGoogle Scholar

  • Mekonnen, T.H., Mussone, P.G., Choi, P., Bressler, D.C. (2015) Development of Proteinaceous Plywood Adhesive and Optimization of Its Lap Shear Strength. Macromol. Mater. Eng. 300:198–209.Web of ScienceGoogle Scholar

  • Militz, H. (2008) Processes and properties of thermally modified wood manufactured in Europe, In: Development of Commercial Wood Preservatives. Eds. Schult, T.P., Militz, H., Freeman, M.H., Goodell, B., Nicholas, D.D. ACS Symposium Series, American Chemical Society, Washington, D.C. pp. 372–388.CrossrefGoogle Scholar

  • Muñoz, G.R., Gete, A.R. (2011) Relationships between mechanical properties of oak timber (Quercus robur L.). Holzforschung, 65:749–755.Google Scholar

  • Pelit, H., Sönmez, A., Budakçı, M. (2015) Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources 10:3097–3111.CrossrefGoogle Scholar

  • Ponneth, D., Vasu, A.E., Easwaran, J.C., Mohandass, A., Chauhan, S.S. (2014) Destructive and non-destructive evaluation of seven hardwoods and analysis of data correlation. Holzforschung, 68:951–956.Web of ScienceGoogle Scholar

  • Rautkari, L., Properzi, M., Pichelin, F., Hughes, M. (2010) Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44:679–691.CrossrefWeb of ScienceGoogle Scholar

  • Rautkari, L., Laine, K., Kutnar, A., Medved, S., Hughes, M. (2013) Hardness and density profile of surface densified and thermally modified Scots pine in relation to degree of densification. J. Mater. Sci. 48:2370–2375.CrossrefWeb of ScienceGoogle Scholar

  • Seborg, R., Millet, M., Stamm, A. (1945) Heat stabilized compressed wood (Staypak). Mech. Eng. 67:25–31.Google Scholar

  • Skaar, C. Wood-Water Relations. Springer Verlag, Berlin, 1988.Google Scholar

  • Welzbacher, C.R., Wehsener, J., Rapp, A.O., Haller, P. (2008) Therom-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – Dimensional stability and durability aspects. Holz Roh. Werkst. 66:39–49.CrossrefGoogle Scholar

About the article

Received: 2016-10-13

Accepted: 2017-03-06

Published Online: 2017-04-07

Published in Print: 2017-06-27

Citation Information: Holzforschung, Volume 71, Issue 6, Pages 515–520, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0178.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anuj Kumar, Jan Richter, Jan Tywoniak, Petr Hajek, Stergios Adamopoulos, Urban Šegedin, and Marko Petrič
Holzforschung, 2017, Volume 0, Number 0
Yeonjung Han, Yonggun Park, Yoon-Seong Chang, Hyunwoo Chung, Chang-Deuk Eom, and Hwanmyeong Yeo
Holzforschung, 2017, Volume 0, Number 0

Comments (0)

Please log in or register to comment.
Log in