Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 7-8

Issues

New insights into the decomposition mechanism of chlorine dioxide at alkaline pH

Jennifer Marcon
  • Corresponding author
  • Université Grenoble Alpes, LGP2, F-38000 Grenoble, France
  • CNRS, LGP2, F-38000 Grenoble, France
  • Agefpi, LGP2, F-38000 Grenoble, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gérard Mortha
  • Université Grenoble Alpes, LGP2, F-38000 Grenoble, France
  • CNRS, LGP2, F-38000 Grenoble, France
  • Agefpi, LGP2, F-38000 Grenoble, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nathalie Marlin
  • Université Grenoble Alpes, LGP2, F-38000 Grenoble, France
  • CNRS, LGP2, F-38000 Grenoble, France
  • Agefpi, LGP2, F-38000 Grenoble, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Molton / Carole Duboc / Auphélia Burnet
Published Online: 2017-04-22 | DOI: https://doi.org/10.1515/hf-2016-0147

Abstract

The mechanism of chlorine dioxide (ClO2) decomposition in an alkaline medium has been investigated. The formation of radicals and chlorinated species was studied in aqueous solutions containing ClO2 and simple model compounds of lignin or cellulose (vanillin, vanillyl alcohol, veratryl alcohol, methylglucoside and cellobiose) at acidic and alkaline pHs. Because hypochlorite (ClO) is an intermediate occurring in the course of the reaction mechanism, similar experiments were carried out with solutions of sodium hypochlorite (NaClO) at alkaline and acidic pHs. Electron paramagnetic resonance (EPR) spectroscopy based on the spin-trapping technique revealed the presence of hydroxyl radicals (HO˙) at alkaline pH with ClO2 alone or with model compounds. At the same pH, only a small amount of HO˙ was detected with ClO. Chlorite (ClO2) and chlorate (ClO3) ions were dosed with iodometric titrations, both during ClO2 alkaline decomposition and during reactions with model compounds. Vanillin and vanillyl alcohol were oxidized by ClO2. The intermediate ClO2 was either inert or reacted with the aldehyde function of vanillin. Cellobiose was attacked only in an alkaline medium, either directly by ClO2 or indirectly by HO˙ radicals. This resulted in the formation of glucose, which was then degraded by ClO2 ions. The generation of HO˙ could be one reason for cellulose degradation by ClO2 at alkaline pH, but possibly not the unique one, as it was not proved in this article, whether or not ClO2 is able to directly attach the OH functions of anhydrosugars at alkaline pH.

Keywords: alkaline pH; bleaching of pulp; chlorine dioxide; decomposition mechanism; EPR spectroscopy; hydroxyl radicals; hypochlorite; iodometric titration; spin-trapping

References

  • Buettner, G.R. (1987) Spin trapping: ESR parameters of spin adducts. Free Radical Bio Med. 3:259–303.Google Scholar

  • Chang, H.M., Jameel, H., Seger, G.E. (1993) High efficiency two-step, high-low pH chlorine dioxide pulp bleaching process, US005268075 patent.

  • Gierer, J. (1990) Basic principles of bleaching. Part 1: cationic and radical processes. Holzforschung 44:387–394.Google Scholar

  • Gierer, J., Yang, E., Reitberger, T. (1992) The reactions of hydroxyl radicals with aromatic rings in lignin, studied with creosol and 4-methylveratrol. Holzforschung 46:495–504.CrossrefGoogle Scholar

  • Guay, D.F., Cole, B.J.W., Fort, R.C., Genco, J.M., Hausman, M.C. (2000) Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. I. Reaction of methyl-β-D-glucopyranoside with photochemically generated hydroxyl radicals. J. Wood Chem. Technol. 20:375–394.CrossrefGoogle Scholar

  • Guay, D.F., Cole, B.J.W., Fort, R.C., Hausman, M.C., Genco, J.M., Elder T.J., Overly, K.R. (2001) Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. II. Reaction of photochemically generated hydroxyl radicals with methyl β-cellobioside. J. Wood Chem. Technol. 21:67–79.CrossrefGoogle Scholar

  • Hart, P., Connell, D. (2008) Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets. Tappi J. 7:3–11.Google Scholar

  • Jiang, Z.-H., Berry, R.M. (2007) Near-neutral chlorine dioxide bleaching of pulp. WO 2007104128 A1 patent.

  • Jiang, Z.-H., Berry, R. (2011) Near-neutral final chlorine dioxide brightening: theory and practice. J. Sci. Technol. For. Prod. Process 1:14–20.Google Scholar

  • Joncourt, M-J., Mortha, G., Lachenal, D. (1997) Investigations on the effect of additives during ClO2 bleaching, 9th International Symposium on Wood and Pulping Chemistry Montréal (Canada) J6 (1)–J6 (5).Google Scholar

  • Joncourt, M-J., Froment, P., Lachenal, D. (1998) Formation of radical species during ClO2 delignification. J. Wood Chem. Technol. 18:159–170.CrossrefGoogle Scholar

  • Lauricella, R., Tuccio, B. (2014) Détection et caractérisation de radicaux libres par RPE après piégeage de spins (ou spin-trapping), In: La spectroscopie de résonance paramagnétique électronique. Eds. EDP sciences, Les Ulis. pp.193–231.Google Scholar

  • Lehtimaa, T., Kuitunen, S., Tarvo, V., Vuorinen, T. (2010) Reactions of aldehydes with chlorous acid and chlorite in chlorine dioxide bleaching. Holzforschung 64:555–561.Web of ScienceGoogle Scholar

  • Odeh, I.N., Fransisco, J. S., Margerum, D.W. (2002) New pathways for chlorine dioxide bleaching in basic solutions. Inorg Chem. 41:6500–6506.CrossrefGoogle Scholar

  • Reeve, D.W. (1996) Chlorine dioxide delignification, In: Pulp Bleaching: Principles and Practices. Eds. Dence, C.W., Reeve D.W., Tappi Press, Atlanta. pp.261–291.Google Scholar

  • Sevastyanova, O., Forsström, A., Wackerberg, E., Lindström, M.E. (2012) Bleaching of eucalyptus kraft pulps with chlorine dioxide: factors affecting the efficiency of the final D stage. Tappi J. 11:43–53.Google Scholar

  • Svenson, D.R., Kadla, J., Chang, H-M., Jameel, H. (2002) Effect of pH on the inorganic species involved in a chlorine dioxide reaction system. Ind. Eng. Chem. Res. 41:5927–5933.CrossrefGoogle Scholar

  • Svenson, D.R., Jameeel, H., Chang H., Kadla, J.F. (2006) Inorganic reactions in chlorine dioxide bleaching of softwood Kraft pulp. J. Wood Chem. Technol. 26:201–213.CrossrefGoogle Scholar

  • Wartiovaara, I. (1982a) The influence of pH in the D1 stage of a D/CED1 bleaching sequence. Pap. Puu. 9:534–545.Google Scholar

  • Wartiovaara, I. (1982b) The influence of pH on the D stages of DE and ODE bleaching sequences. Pap. Ja Puu. 10: 581–584.Google Scholar

  • Wartiovaara, I. (1985). The role of inorganic oxidation-reduction reactions in pulp bleaching with chlorine dioxide. PhD thesis, University of Helsinki, Helsinki.Google Scholar

  • Wartiovaara, I. (1986) Reaction mechanism of effective chlorine dioxide bleaching. Tappi J. 62:82–85.Google Scholar

About the article

Received: 2016-09-12

Accepted: 2017-03-23

Published Online: 2017-04-22

Published in Print: 2017-07-26


Citation Information: Holzforschung, Volume 71, Issue 7-8, Pages 599–610, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0147.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Runlong Hao, Yunchang Song, Zhiyin Tian, Yunhao Li, Yi Zhao, Zheng Wang, Yaping Gong, Zhao Ma, and Zhen Qian
Chemical Engineering Journal, 2019, Page 123164
[2]
Shujun Sun, Suxia Ma, Bingchuan Yang, Rongji Cui, and Jie Wang
Energy & Fuels, 2019
[3]
Runlong Hao, Zheng Wang, Yaping Gong, Zhao Ma, Zhen Qian, Yichen Luo, Bo Yuan, and Yi Zhao
Journal of Hazardous Materials, 2019, Page 121135
[4]
Runlong Hao, Xingzhou Mao, Zhen Qian, Yi Zhao, Lidong Wang, Bo Yuan, Kaimin Wang, Zihan Liu, Meng Qi, and John Crittenden
Environmental Science & Technology, 2019, Volume 53, Number 15, Page 9014
[5]
Runlong Hao, Xinhong Dong, Zheng Wang, Le Fu, Yi Han, Bo Yuan, Yaping Gong, and Yi Zhao
Environmental Science & Technology, 2019, Volume 53, Number 14, Page 8324
[6]
Runlong Hao, Zheng Wang, Xingzhou Mao, Yaping Gong, Bo Yuan, Yi Zhao, Baojuan Tian, and Meng Qi
Journal of Hazardous Materials, 2019, Volume 374, Page 120
[7]
Runlong Hao, Xingzhou Mao, Zheng Wang, Yi Zhao, Tianhao Wang, Zhonghao Sun, Bo Yuan, and Yankun Li
Journal of Hazardous Materials, 2019, Volume 368, Page 234

Comments (0)

Please log in or register to comment.
Log in