Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 7-8

Issues

Utilization of lignin powder for manufacturing self-binding HDF

Ramunas TupciauskasORCID iD: http://orcid.org/0000-0002-5172-1946 / Janis Gravitis / Janis Abolins
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006, Riga, Latvia
  • Institute of Atomic Physics and Spectroscopy, University of Latvia, 4 Skunu Str., LV-1586, Riga, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andris Veveris / Martins Andzs / Tiina Liitia / Tarja Tamminen
Published Online: 2017-04-04 | DOI: https://doi.org/10.1515/hf-2016-0180

Abstract

The preparation of self-binding lignocellulosic fibreboards has been investigated. Different high-density fibreboards (HDF) were hot-pressed based on a mixture of grey alder (Alnus incana L. Moench) wood chips processed by steam explosion auto-hydrolysis (SE) and 15% or 25% lignin content from three different industrial sources: softwood kraft lignin (SWKL), soda wheat straw lignin (SoWhStL) and hydrolysis wheat straw lignin (HWhStL). Density, thickness swelling (TS) after immersion in water for 24 h, modulus of rupture (MOR), modulus of elasticity (MOE) and strength of internal bond (IB) of the board samples were determined. The amount (15% or 25%) and moisture content (MC) (18±1% or 5±2%) of the added lignin affected all the tested properties of the HDF except for density. However, the kind of the added lignin affects the obtained fibreboard more significantly compared to the control sample made without an admixture of lignin. In some cases, the tested values were diminished to half. The tested properties of the HDF samples produced with SoWhStL or HWhStL are compatible with standard requirements for medium-density fibreboard (MDF) for general use under dry conditions (EN 622-5, MDF), however, it depends on the lignin amount and MC.

Keywords: grey alder; industrial lignins; self-binding fibreboards; steam explosion auto-hydrolysis

References

  • Anglès, M.N., Reguant, J., Montané, D., Ferrando, F., Farriol, X., Salvadó, J. (1999) Binderless composites from pretreated residual softwood. J. Appl. Polym. Sci. 73:2485–2491.CrossrefGoogle Scholar

  • Anglès, M.N., Ferrando, F., Farriol, X., Salvadó, J. (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenergy 21:211–224.CrossrefGoogle Scholar

  • Bertaud, F., Tapin-Lingua, S., Pizzi, A., Navarrete, P., Petit-Conil, M. (2012) Development of green adhesives for fibreboard manufacturing, using tannins and lignin from pulp mill residues. Cellul. Chem. Technol. 46:449–455.Google Scholar

  • El Mansouri, N.E., Yuan, Q., Huang, F. (2011) Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources 6:2647–2662.Google Scholar

  • EN 310 (2001). Wood-based panels. Determination of modulus of elasticity in bending and of bending strength.

  • EN 317 (2000). Particleboards and fibreboards – determination of swelling in thickness after immersion in water. Belgium.

  • EN 319 (2000). Particleboards and fibreboards; determination of tensile strength perpendicular to the plane of the board.

  • EN 323 (1993). Wood-based panels. Determination of density.Web of Science

  • EN 622-5 (2010). Fibreboards – specifications. Part 5 – requirements for dry process boards (MDF).

  • EPF (2009). European Panel Federation. Annual Report 2008–2009. Brussels.Google Scholar

  • European Comission (2012). Innovating for sustainable growth: a bioeconomy for Europe. Brussels.Google Scholar

  • Grāvītis, J., Ābolinš, J., Tupčiauskas, R., Vēveris, A. (2010) Lignin from steam-exploded wood as binder in wood composites. J. Environ. Eng. Landsc. Manag. 18:75–84.CrossrefGoogle Scholar

  • IARC (2006). Monographs on the evaluation of carcinogenic risk to humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, International Agency for Research on Cancer. Lyon.

  • Jones, D. (2007). Review of existing bioresins and their applications, Report No 231931, Building Research Establishment Ltd, Garston, UK.Google Scholar

  • Laemsak, N., Okuma, M. (2000) Development of boards made from oil palm frond II: properties of binderless boards from steam-exploded fibers of oil palm frond. J. Wood Sci. 46:322–326.CrossrefGoogle Scholar

  • Liitiä, T., Rovio, S., Talja, R., Tamminen, T., Rencoret, J., Gutiérrez, A., del Río, J.C., Saake, B., Schwarz, K.U., Vila, C., Gravitis, J., Orlandi, M. (2014a) Structural characteristics of industrial lignins in respect to their valorization, In: 13th European Workshop on Lignocellulosics and Pulp, EWLP 2014, June 24–27, 2014, Seville, Spain. pp. 79–82.Google Scholar

  • Liitiä, T., Rovio, S., Talja, R., Tamminen, T., Rencoret, J., Gutiérrez, A., del Río, J.C., Sutka, A., Tupciauskas, R., Andzs, M., Gravitis, J. (2014b) Effect of steam explosion on fibre lignin structure for self-binding fiber boards. In: Eds. del Río, J.C., Gutiérrez, A., Rencoret, J., Martínez, Á.T. 13th European Workshop on Lignocellulosics and Pulp, EWLP 2014, June 24–27, 2014, Seville, Spain. Proceedings. Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), pp. 515–518.Google Scholar

  • Lin, S.Y., Dence, C.W. (1992). Methods in Lignin Chemistry. Springer-Verlag, Berlin, Heidelberg.Google Scholar

  • Lora, J. (2008). Industrial commercial lignins: sources, properties and applications. In: Eds. Belgacem, M., Gandini, A. Monomers, Polymers and Composites from Renewable Resources. Elsevier, Oxford, UK, pp. 225–241.Google Scholar

  • Mancera, C. (2008). Binderless fiberboard production from Cynara cardunculus and Vitis vinifera. Doctoral thesis, Univ. Rovira I Virgili, Tarragona, Spain.Google Scholar

  • Mancera, C., El Mansouri, N.E., Ferrando, F., Salvado, J. (2011a) The suitability of steam exploded vitis vinifera and alkaline lignin for the manufacture of fiberboard. BioResources 6:4439–4453.Google Scholar

  • Mancera, C., El Mansouri, N.E., Vilaseca, F., Ferrando, F., Salvado, J. (2011b) The effect of lignin as a natural adhesive on the physico-mechanical properties of Vitis vinifera fiberboards. BioResources 6:2851–2860.Google Scholar

  • Mansouri, H.R., Navarrete, P., Pizzi, A., Tapin-Lingua, S., Benjelloun-Mlayah, B., Pasch, H., Rigolet, S. (2010) Synthetic-resin-free wood panel adhesives from mixed low molecular mass lignin and tanin. Eur. J. Wood Wood Prod. 69:221–229.Google Scholar

  • Naegele, H., Pfitzer, J., Ziegler, L., Inone-kauffmann, E.R., Eisenreich, N. (2016) Applications of Lignin Materials and Their Composites (Lignin Applications in Various Industrial Sectors, Future Trends of Lignin and Their Composites), In: Lignin in Polymer Composites. Elsevier Inc., St Louis, MO. pp. 233–244.Google Scholar

  • Pizzi, A. (2003a) Natural phenolic adhesives I: Tannin. In: Handbook of Adhesive Technology. Taylor & Francis Group, LLC, Abingdon, Oxford, UK. pp. 573–587.Google Scholar

  • Pizzi, A. (2003b) Natural phenolic adhesives II: Lignin. In: Handbook of Adhesive Technology. Taylor & Francis Group, LLC, Abingdon, Oxford, UK. pp. 588–598.Google Scholar

  • Rowell, R., Lange, S., Davis, M., Service, F. (2000) Steam Stabilization of Aspen Fiberboards. In: Proceedings of the 5th Pacific Rim Bio-Basedcomposites Symposium, 2000 December 10–13; Canberra, Australia. pp. 425–438.Google Scholar

  • Sellers, T. (2001) Wood adhesive innovations and applications in North America. For. Prod. J. 51:12–22.Google Scholar

  • Suzuki, S., Shintani, H., Park, S.Y., Saito, K., Laemsak, N., Okuma, M., Iiyama, K. (1998) Preparation of binderless boards from steam exploded pulps of oil palm (Elaeis guineensis Jaxq.) fronds and structural characteristics of lignin and wall polysaccharides in steam exploded pulps to be discussed for self-bindings. Holzforschung 52:417–426.CrossrefGoogle Scholar

  • Tupciauskas, R., Veveris, A., Gravitis, J. (2011) Self-binding fibreboard made of steam exploded wood: the case of medium density. In: Proceedings of the 7th Meeting of the Nordic-Baltic Network in Wood Material Science & Engineering (WSE), October 27–28, Oslo, Norway. pp. 179–184.Google Scholar

  • Tupciauskas, R., Irbe, I., Janberga, A., Buksans, E. (2017) Moisture and decay resistance and reaction to fire properties of self-binding fibreboard made from steam-exploded grey alder wood. Wood Mater. Sci. Eng. 12:63–71.Google Scholar

  • Van Dam, J.E.G., Van den Oever, M.J.A., Keijsers, E.R.P. (2004) Production process for high density high performance binderless boards from whole coconut husk. Ind. Crops Prod. 20:97–101.CrossrefGoogle Scholar

  • Velásquez, J.A., Ferrando, F., Farriol, X., Salvadó, J. (2003a) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci. Technol. 37, 269–278.CrossrefGoogle Scholar

  • Velásquez, J.A., Ferrando, F., Salvadó, J. (2003b) Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis. Ind. Crops Prod. 18:17–23.CrossrefGoogle Scholar

  • Vishtal, A., Kraslawski, A. (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568.Google Scholar

  • Yuan, T.Q., Yang, S., Xu, F., Sun, R.C. (2014) Conversion of lignin into high-valued lignin-phenol-formaldehyde (LPF) resin adhesive and improving the economics of the biorefinery. In: Proceedings of the 13th European Workshop on Lignocellulosics and Pulp (EWLP), June 24–27, 2014, Seville, Spain. pp. 893–896.Google Scholar

About the article

Received: 2016-10-13

Accepted: 2017-02-27

Published Online: 2017-04-04

Published in Print: 2017-07-26


Citation Information: Holzforschung, Volume 71, Issue 7-8, Pages 555–561, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0180.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhe Wang, Yutao Yan, Xiaoping Shen, Temeng Qian, Junjie Wang, Qingfeng Sun, and Chunde Jin
Polymers, 2018, Volume 10, Number 3, Page 341

Comments (0)

Please log in or register to comment.
Log in