Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 71, Issue 7-8


Production of hemicellulose oligomers from softwood chips using autohydrolysis followed by an enzymatic post-hydrolysis

Vivien Deloule / Christine Chirat / Claire Boisset / Bertrand Toussaint
  • Université Grenoble Alpes, Timc-Imag CNRS UMR 5525. F-38000 Grenoble, France
  • Institut de Biologie, Département de Biochimie, CHU-Grenoble Alpes, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jadwiga Chroboczek
Published Online: 2017-05-25 | DOI: https://doi.org/10.1515/hf-2016-0181


In the context of value added valorization of hemicelluloses (HCs), their soft extraction by autohydrolysis (AH) of softwood (SW) chips has been optimized via the temperature/time parameters (170°C/2 h, 170°C/1 h and 150°C/1 h). Two enzyme mixtures containing mainly a glucanase and a mannanase were used to decrease the degree of polymerization (DP) of the extracted HCs. Hydrolysates containing HCs were analyzed in terms of monomers and oligomers, molecular weight distribution (MWD) and chemical composition. The MW was strongly dependent on AH conditions: most of the water-soluble HCs with 1800 Da MW were obtained at 150°C/1 h. The parameters 170°C/2 h gave rise to MWs<1800 Da. Enzymatic hydrolysis (EH) reduced efficiently the DP of HCs, and the glucosidase was more efficient than the mannanase, but the former also hydrolyzed more oligomers into their monomeric components.

Keywords: autohydrolysis (AH); biorefinery; carbohydrates degradation products; enzymatic hydrolysis (EH); galactoglucomannans (GGMs); hemicelluloses (HCs); mass spectroscopy (MALDI-TOF MS); molar mass distribution of hemicelluloses; oligosaccharides; softwood (SW)


  • Bianchi, S., Koch, G., Janzon, R., Mayer, I., Saake, B., Pichelin, F. (2016) Hot water extraction of Norway spruce (Picea abies [Karst.]) bark: analyses of the influence of bark aging and process parameters on the extract composition. Holzforschung 70:619–631.Google Scholar

  • Blumentritt, M., Gardner, D.J., Cole, B.J.W., Shaler, S.M. (2016) Influence of hot-water extraction on ultrastructure and distribution of glucomannans and xylans in poplar xylem as detected by gold immunolabeling. Holzforschung 70:243–252.Web of ScienceGoogle Scholar

  • Boiron, L. (2012) Etude de l’impact de l’extraction des hémicelluloses du bois sur les procédés d’obtention de cellulose et d’éthanol dans le cadre d’une bioraffinerie lignocellulosique. PhD Thesis of University Grenoble Alpes, France.Google Scholar

  • Boucher, J., Chirat, C., Lachenal, D. (2014) Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. Energ. Convers. Manage. 88:1120–1126.CrossrefWeb of ScienceGoogle Scholar

  • Da Costa Sousa, L., Chundawat, S., Balan, V., Dale, B. (2009) Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotech. 20:339–347.Web of ScienceCrossrefGoogle Scholar

  • Deloule, V., Boisset, C., Chroboczek, J., Toussaint, B., Chirat, C. (2016) Preparation of softwood hemicellulose fractions for the study of their potential prebiotic effect. 14th EWLP, Autrans, France. Proceedings pp. 83–86.Google Scholar

  • Dechoux, T., Toussaint, B., Chirat, C. (2014) Valorisation pharmaceutique ou nutraceutique des hémicelluloses de la biomasse végétale. Master Thesis, Université de Grenoble Alpes.Google Scholar

  • Faber, T.A., Hopkins, A.C., Middelbos, I.S., Price, N.P., Fahey, G.C. (2011) Galactoglucomannan oligosaccharide supplementation affects nutrient digestibility, fermentation end-product production, and large bowel microbiota of the dog. J. Anim. Sci. 89:103–112.Web of ScienceGoogle Scholar

  • Garrote, G., Domínguez, H., Parajó, J. (1999) Mild autohydrolysis:an environmentally friendly technology for xylooligosaccharideproduction from wood. J. Chem. Technol. Biotech. 74:1101–1109.CrossrefGoogle Scholar

  • González-Muñoz, M.J., Rivas, S., Santos, V., Parajó, J.C. (2013) Aqueous processing of Pinus pinaster wood: kinetics of polysaccharide breakdown. Chem. Eng. J. 231:380–387.CrossrefWeb of ScienceGoogle Scholar

  • Gullón, P., Gullón, B., Cardelle-Cobas, A., Alonso, J.L., Pintado, M., Gomes, A.M. (2014) Effects of hemicellulose-derived saccharides on behavior of Lactobacilli under simulated gastrointestinal conditions. Food. Res. Int. 64:880–888.Web of ScienceCrossrefGoogle Scholar

  • Han, W., Zhao, C., Elder, T., Chen, K., Yang, R., Kim, D., Pu, Y., Hsieh, J., Ragauskas, A. (2012) Study on the modification of bleached eucalyptus kraft pulp using birch xylan. Carbohyd. Polym. 88:719–725.Web of ScienceCrossrefGoogle Scholar

  • Hernot, D.C., Boileau, T.W., Bauer, L.L., Middelbos, I.S., Murphy, M.R., Swanson, K.S., Fahey, G.C. Jr. (2009) In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J. Agric. Food Chem. 57:1354–1361.CrossrefWeb of ScienceGoogle Scholar

  • Hopkins, M.J., Cummings, J.H., Macfarlane, G.T. (1998) Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J. Appl. Microbiol. 85:381–386.CrossrefGoogle Scholar

  • Hopkins, A.C., Lehtinen, T.A., Lowe, M.W., Wang, X., Killam, W.H. (2009) Prebiotic composition and methods of making and using the same. US 20090304852 A1.

  • Kisonen, V., Prakobna, K., Xu, C., Salminen, A., Mikkonen, K., Valtakari, D., Eklund, P., Seppälä, J., Tenkanen, M., Willför, S. (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J. Mater. Sci. 50:3189–3199.CrossrefWeb of ScienceGoogle Scholar

  • Kleen, M., Pranovich, A., Willför, S. (2016) Statistical modeling of pressurized hot-water batch extraction (PHWE) to produce hemicelluloses with desired properties. Holzforschung 70:633–640.Web of ScienceGoogle Scholar

  • Klinke, H.B., Thomsen, A.B., Ahring, B.K. (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66:10–26.CrossrefGoogle Scholar

  • Kudahettige-Nilsson, R., Helmerius, J., Robert, T.N., Magnus, S., Hodge, D., Rova, U. (2015) Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor. Bioresource Technol. 176:71–79.CrossrefGoogle Scholar

  • Lehtonen, M., Teräslahti, S., Xu, C., Yadav, M.P., Lampi, A-M., Mikkonen, K.S. (2016) Spruce galactoglucomannans inhibit lipid oxidation in rapeseed oil-in-water emulsions. Food Hydrocolloid. 58:255–266.CrossrefWeb of ScienceGoogle Scholar

  • McDonald-Wharry, J. (2010) Characterisation of water soluble polysaccharide produced during prehydrolysis of Pinus radiata. Master Thesis of University of Waikato, New Zealand.Google Scholar

  • Mäki-Arvela, P., Salmi, T., Holmbom, B., Willför, S., Murzin, D. (2011) Synthesis of sugars by hydrolysis of hemicelluloses- a review. Chem. Rev. 111:5638–5666.CrossrefWeb of ScienceGoogle Scholar

  • Moure, A., Gullón, P., Domínguez, H., Parajó, J.C. (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem. 41:1913–23.CrossrefGoogle Scholar

  • Nebreda, A.P., Grénman, H., Mäki-Arvela, P., Eränen, K., Hemming, J., Willför, S., Murzin, D.Y., Salmi, T. (2016) Acid hydrolysis of O-acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung 70:187–194.Google Scholar

  • Oinonen, P., Krawczyk, H., Ek, M., Henriksson, G., Moriana, R. (2016) Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: thermal, mechanical and oxygen barrier properties. Carbohyd. Polym. 136:146–153.Web of ScienceGoogle Scholar

  • Örså, F., Holmbom, B., Thornton, J. (1997) Dissolution and dispersion of spruce components into hot water. Wood Sci. Technol. 31:279–290.CrossrefGoogle Scholar

  • Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, T., Lowell, E., Amidon, T. (2014) Effect of hot water extracted hardwood and softwood chips on particleboard properties. Holzforschung 68:807–815.Web of ScienceGoogle Scholar

  • Park, S.J., Um, B.H. (2015) Optimization study on acid hydrolysis of hardwood-derived hemicellulosic extract for alcohol fermentation using response surface methodology. Holzforschung 69:135–141.Web of ScienceGoogle Scholar

  • Persin, Z., Stana-Kleinschek, K., Foster, T.J., Van Dam, J.E.G., Boeriu, C.G., Navard, P. (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohyd. Polym. 84:22–32.CrossrefWeb of ScienceGoogle Scholar

  • Prakobna, K., Kisonen, V., Xu, C., Berglund, L.A. (2015) Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J. Mater. Sci. 50:7413–7423.Web of ScienceCrossrefGoogle Scholar

  • Rivas, S., Gullón, B., Gullón, P., Alonso, J.L., Parajó, J.C. (2012) Manufacture and properties of bifidogenic saccharides derived from wood mannan. J. Agric. Food Chem. 60:4296–4305.CrossrefWeb of ScienceGoogle Scholar

  • Rivas, S., González-Muñoz, M., Vila, C., Santos, V., Parajó, J.C. (2013) Manufacture of levulinic acid from pine wood hemicelluloses: a kinetic assessment. Ind. Eng. Chem. Res. 52:3951–3957.CrossrefWeb of ScienceGoogle Scholar

  • Pu, Y., Treasure, T., Gonzalez, R., Venditti, R.A., Jameel, H. (2013) Autohydrolysis pretreatment of mixed softwood to produce value prior to combustion. Bioenerg. Res. 6:1094–1103.CrossrefWeb of ScienceGoogle Scholar

  • Roberfroid, M.B. (2007) Inulin-type fructans: functional food ingredients, J. Nutr. 137:2493S–2502S.Google Scholar

  • Roselli, A., Asikainen, S., Stepan, A., Monshizadeh, A., von Weymarn, N., Kovasin, K., Wang, Y., Xiong, H., Turunen, O., Hummel, M., Sixta, H. (2016) Comparison of pulp species in IONCELL-P: selective hemicellulose extraction method with ionic liquids. Holzforschung 70:291–296.Google Scholar

  • Salinardi, T.C., Rubin, K.H., Black, R.M., St-Onge, M.P. (2010) Coffee mannooligosaccharides, consumed as part of a free-living, weight-maintaining diet, increase the proportional reduction in body volume in overweight men. J. Nutr. 140:1943–1948.Web of ScienceCrossrefGoogle Scholar

  • Sanglard, M., Chirat, C., Jarman, B., Lachenal, D. (2013) Biorefinery in a pulp mill: simultaneous production of cellulosic fibers from Eucalyptus globulus by soda-anthraquinone cooking and surface-active agents. Holzforschung 67:481–488.Google Scholar

  • Sanglard, M. (2013) Production simultanée de fibres cellulosiques blanchies et de polyxylosides d’alkyle dans lecadre d’une bioraffinerie papetière. PhD Thesis of University Grenoble Alpes, France.Google Scholar

  • Sauperl, O., Doliska, A., Hadela, A., Strnad, S. (2015) Functionalization of polyethyleneterephthalate fibers using galactoglucomannan from spruce wood. Text. Res. J. 86:202–209.Web of ScienceGoogle Scholar

  • Silva, A., Marcelino, H., Gomes, M., Oliveira, E., Nagashima, T., Egito, E. (2012) Xylan, a promising hemicellulose for pharmaceutical use. Products and applications of biopolymers. Edition Dr. Johan Verbeek, ISBN: 978-953-51-0226-7.Google Scholar

  • Singh, R.D., Banerjee, J., Arora, A. (2015) Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioactive Carbohyd. Dietary Fibre. 5:19–30.Google Scholar

  • Song, T., Pranovich, A., Sumerskiy, I., Holmbom, B. (2008) Extraction of galactoglucomannan from spruce wood with pressurised hot water. Holzforschung 62:659–666.Web of ScienceGoogle Scholar

  • Testova, L., Chong S-L., Tenkanen, M., Sixta, H. (2011) Autohydrolysis of birch wood. 11th EWLP, Hamburg, Germany. Holzforschung 65:535–542.Google Scholar

  • Tissar, J. (2011) Highlights on wood pulp and other fibre furnish: 1999–2009 (wood pulp, other fibre pulp and recovered paper) FAOSTAT-ForesSTA. A technical report, available via internet.Google Scholar

  • Tester, R.F., Al-Ghazzewi, F.H. (2016) Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J. Sci. Food Agric. 96:3283–3291.Web of ScienceCrossrefGoogle Scholar

  • Tunc, M.S., Chheda, J., van der Heide, E., Morris, J., van Heiningen, A. (2014) Pretreatment of hardwood chips via autohydrolysis supported by acetic and formic acid. Holzforschung 68:401–409.Google Scholar

  • Van Heiningen, A. (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap. Can. 107:141–146.Google Scholar

  • Zhang, C., Runge, T. (2012) Fractionating pentosans and hexosans in hybrid poplar. Ind. Eng. Chem. Res., 51:133–139.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-10-14

Accepted: 2017-04-04

Published Online: 2017-05-25

Published in Print: 2017-07-26

Citation Information: Holzforschung, Volume 71, Issue 7-8, Pages 575–581, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0181.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaoya Jiang, Qingxi Hou, Wei Liu, Honglei Zhang, Yudi Cui, and Xiaodi Wang
Holzforschung, 2018, Volume 72, Number 5, Page 347
Morad Chadni, Nabil Grimi, Olivier Bals, Isabelle Ziegler-Devin, and Nicolas Brosse
Industrial Crops and Products, 2019, Volume 141, Page 111757
Ramkrishna D. Singh, Cresha Gracy Nadar, Jane Muir, and Amit Arora
Journal of Cleaner Production, 2019, Volume 241, Page 118237

Comments (0)

Please log in or register to comment.
Log in