Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 71, Issue 7-8


Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements

Jerk Rönnols / Anna Jacobs / Fredrik Aldaeus
Published Online: 2017-04-07 | DOI: https://doi.org/10.1515/hf-2016-0182


The general molecular properties and in particular, the molar mass of lignin are of central importance for industrial applications, as these data govern important thermal and mechanical characteristics. The focus of the present paper is pulsed field gradient-nuclear magnetic resonance (PFG-NMR), which is suitable for determination of lignins’ weight-average molar mass, based on diffusion constants. The method is calibrated by lignin fractions characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). It could be demonstrated on a set of softwood kraft lignins that the PFG-NMR approach gives results in very good agreement with those obtained using conventional size exclusion chromatography (SEC).

This article offers supplementary material which is provided at the end of the article.

Keywords: diffusion; diffusion ordered spectroscopy (DOSY); HSQC; lignin fractionation; MALDI-TOF MS; molar mass; nuclear magnetic resonance (NMR); pulsed field gradient NMR (PFG-NMR); size exclusion chromatography (SEC); softwood kraft lignin


  • Asikkala, J., Tamminen, T., Argyropoulos, D.S. (2012) Accurate and reproducible determination of lignin molar mass by acetobromination. J. Agric. Food. Chem. 60:8968–8973.CrossrefWeb of ScienceGoogle Scholar

  • Baumberger, S., Abaecherli, A., Fasching, M., Gellerstedt, G., Gosselink, R., Hortling, B., Li, J., Saake, B., de Jong, E. (2007) Molar mass determination of lignins by size-exclusion chromatography: towards standardization of the method. Holzforschung 61:459–468.CrossrefGoogle Scholar

  • Cohen, Y., Avram, L., Frish, L. (2005) Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter-new insights. Angew. Chem. Int. Ed. 44:520–554.CrossrefGoogle Scholar

  • Constant, S., Wienk, H. L. J., Frissen, A. E., de Peinder, P., Boelens, R., van Es, D. S., Griesel, R. J. H., Weckhuysen, B. M., Huijgen, W. J. J., Gosselink, R. J. A., and Bruijnincx, P. C. A. (2016) New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem. 18:2651–2665.CrossrefGoogle Scholar

  • Gellerstedt, G. (1992) Gel permeation chromatography. In: Methods in lignin chemistry. Eds. Lin, S. Y., Dence, C. W. Springer-Verlag, Berlin. pp. 487–497.Google Scholar

  • Gosselink, R.J.A., Abächerli, A., Semke, H., Malherbe, R., Käuper, P., Nadif, A., van Dam, J.E.G. (2004) Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products 19:271–281.Google Scholar

  • Holz, M., Heil, S.R., Sacco, A. (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2:4740–4742.CrossrefGoogle Scholar

  • Jacobs, A., Dahlman, O. (2000) Absolute molar mass of lignins by size exclusion chromatography and MALDI-TOF mass spectroscopy. Nord. Pulp Pap. Res. J. 15:120–127.CrossrefGoogle Scholar

  • Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S. (2007) Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55:9142–9148.CrossrefGoogle Scholar

  • Kosyakov, D.S., Ul’yanovskii, N.V., Sorokina, E.A., Gorbova, N.S. (2014) Optimization of sample preparation conditions in the study of lignin by MALDI mass spectrometry. J. Anal. Chem. 69:1344–1350.Web of ScienceCrossrefGoogle Scholar

  • Kotliar, A.M. (1964) A critical evaluation of mathematical molecular weight distribution models proposed for real polymer distributions. I. Effects of a low molecular weight cut-off value. J. Polym. Sci., Part A 2:4303–4325.Google Scholar

  • Li, W., Chung, H., Daeffler, C., Johnson, J.A., Grubbs, R.H. (2012) Application of 1H DOSY for facile measurement of polymer molecular weights. Macromolecules 45:9595–9603.Web of ScienceCrossrefGoogle Scholar

  • Liitiä, T.M., Maunu, S.L., Hortling, B., Toikka, M., Kilpeläinen, I. (2003) Analysis of technical lignins by two- and three-dimensional NMR spectroscopy. J. Agric. Food Chem. 51:2136–2143.CrossrefGoogle Scholar

  • Lundquist, K., Li, S., Parkås, J. (2009) 1H NMR database of lignin model compounds in different solvents. Göteborg: Chalmers University of Technology.Google Scholar

  • Lundquist, K., Stomberg, R. (1988) On the occurrence of structural elements of the lignan type (β-β structures) in lignins-the crystal structures of (+)-pinoresinol and (±)-trans-3,4-divanillyltetrahydrofuran. Holzforschung 42:375–384.CrossrefGoogle Scholar

  • Lupoi, J.S., Singh, S., Parthasarathi, R., Simmons, B.A., Henry, R.J. (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sust. Energ. Rev. 49:871–906.Web of ScienceCrossrefGoogle Scholar

  • Metzger, J.O., Bicke, C., Faix, O., Tuszynski, W., Angermann, R., Karas, M., Strupat, K. (1992) Matrix-assisted laser desorption mass spectrometry of lignins. Angew. Chem. Int. Ed. Engl. 31:762–764.CrossrefGoogle Scholar

  • Netopilík, M., Podzimek, Š., Kratochvíl, P. (2001) Estimation of width of narrow molecular-weight distributions by size-exclusion chromatography with concentration and light scattering detection. J. Chromatogr. A, 922:25–36.Google Scholar

  • Nishibe, S., Tsukamoto, H., Hisada, S. (1984) Effects of o-methylation and o-glucosylation on carbon-13 nuclear magnetic resonance chemical shifts of matairesinol, (+)-pinoresinol and (+)-epipinoresinol. Chem. Pharm. Bull. 32:4653–4657.CrossrefGoogle Scholar

  • Norgren, M., Lindström, B. (2000) Physico-chemical characterization of a fractionated kraft lignin. Holzforschung 54:528–534.CrossrefGoogle Scholar

  • Pla, F. (1992) Vapor pressure osmometry. In: Methods in lignin chemistry. Eds. Lin, S.Y., Dence, C.W. Springer, Berlin, Heidelberg. pp. 509–517.Google Scholar

  • Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., Weckhuysen, B.M. (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55:2–54Web of ScienceCrossrefGoogle Scholar

  • Rönnols, J., Schweinebarth, H., Jacobs, A., Stevanic, J.S., Olsson, A-M., Reimann, A., Aldaeus, F. (2015) Structural changes in softwood kraft lignin during nonoxidative thermal treatment. Nord. Pulp Pap. Res. J. 30:550–561.CrossrefGoogle Scholar

  • Stejskal, E.O., Tanner, J.E., (1965) Spin diffusion measurements: spin echoes in the presence of a time dependent field gradient. J. Chem. Phys. 42:288–297.Google Scholar

  • Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A.K., Ragauskas, A.J. (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels. Bioprod. Bioref. 8:836–856.CrossrefGoogle Scholar

  • Tomani, P. (2010) The LignoBoost process. Cellul. Chem. Technol. 44:53–58.Google Scholar

  • Tsierkezos, N.G., Kelarakis, A.E., Palaiologou, M.A. (2000) Densities, viscosities, refractive indices, and surface tensions of dimethyl sulfoxide + butyl acetate mixtures at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 45:395–398.Google Scholar

  • Vainio, U., Maximova, N., Hortling, B., Laine, J., Stenius, P., Simola, L.K., Gravitis, J., Serimaa, R. (2004) Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 20:9736–9744CrossrefGoogle Scholar

  • Wen, J.-L., Sun, S.-L., Xue, B-L., Sun, R.-C. (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391.CrossrefWeb of ScienceGoogle Scholar

  • Wu, D., Chen, A., Johnson, C.S. Jr. (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar gradient pulses. J. Magn. Reson. Ser. A 115:260–264.CrossrefGoogle Scholar

About the article

Received: 2016-10-14

Accepted: 2017-03-06

Published Online: 2017-04-07

Published in Print: 2017-07-26

Citation Information: Holzforschung, Volume 71, Issue 7-8, Pages 563–570, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0182.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

James R. D. Montgomery, Priory Bazley, Tomas Lebl, and Nicholas J. Westwood
ChemistryOpen, 2019, Volume 8, Number 5, Page 601
Philipp Schlee, Omid Hosseinaei, Darren Baker, Alice Landmér, Per Tomani, María José Mostazo-López, Diego Cazorla-Amorós, Servann Herou, and Maria-Magdalena Titirici
Carbon, 2019, Volume 145, Page 470
Qingqing Mei, Xiaojun Shen, Huizhen Liu, Hangyu Liu, Junfeng Xiang, and Buxing Han
Chemical Science, 2019
Grigory Zinovyev, Irina Sulaeva, Stepan Podzimek, Dierk Rössner, Ilkka Kilpeläinen, Ivan Sumerskii, Thomas Rosenau, and Antje Potthast
ChemSusChem, 2018
Christopher S. Lancefield, Hans L. J. Wienk, Rolf Boelens, Bert M. Weckhuysen, and Pieter C. A. Bruijnincx
Chemical Science, 2018
Zaojuan Qi, Bo Zhang, Jianwei Ji, Xinxin Li, Tao Dai, Haiwei Guo, Aiqin Wang, Lican Lu, and Changzhi Li
ChemPlusChem, 2018
James R. D. Montgomery, Christopher S. Lancefield, Daniel M. Miles-Barrett, Katrin Ackermann, Bela E. Bode, Nicholas J. Westwood, and Tomas Lebl
ACS Omega, 2017, Volume 2, Number 11, Page 8466

Comments (0)

Please log in or register to comment.
Log in