Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 7-8

Issues

Biomass conversion into blow-in heat insulation materials by steam explosion

14th European Workshop on Lignocellulosics and Pulp (EWLP), Grenoble, France, June 28–30, 2016

Martins Andzs / Ramunas TupciauskasORCID iD: http://orcid.org/0000-0002-5172-1946 / Andris Veveris / Laura Andze / Janis Abolins / Janis Gravitis
Published Online: 2017-06-28 | DOI: https://doi.org/10.1515/hf-2016-0188

Abstract

The study of converting grey alder (Alnus incana) chips and silver birch (Betula pendula) flakes – residues from plywood manufacture – into blow-in insulation material by steam explosion (SE) is reported. The SE was conducted at temperatures between 200 and 235°C, for 0–5 min at pressures between 16 and 32 MPa. The severity parameters (logR0) of the SE was calculated, from which logR0≈3.6 was the most appropriate for production of blow-in materials. Thermal conductivity of the obtained insulating material was found to be in the range of 0.053–0.057 W m−1·K−1.

Keywords: auto-hydrolysis; birch flakes; blow-in heat insulation; grey alder; steam explosion; thermal conductivity

References

  • Abdou, A., Budaiwi, I. (2013) The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content. J. Constr. Build. Mat. 43:533–544.Google Scholar

  • Abolins, J., Gravitis, J. (2007) Biomass conversion to transportation fuels, combustibles and nano-materials by steam explosion. Latvian J. Phys. Techn. Sci. 4:29–39.Google Scholar

  • Al-Homoud, M.S. (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 40:353–366.Google Scholar

  • Andzs, M., Tupciauskas, R., Veveris, A., Gravitis, J. (2015) Impact of wood fraction, moisture and steam explosion on the development of an innovative insulation material. In: Proceedings of the 10th International Scientific and Practical Conference on Environment Technology Resources, Rezekne, Latvia. 1:11–15.Google Scholar

  • Asdrubali, F., D’Alessandro, F., Schiavoni, S. (2015) A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4:1–17.Google Scholar

  • Brazdausks, P., Tupciauskas, R., Andzs, M., Rizhikovs, J., Puke, M., Paze, A., Meile, K., Vedernikovs, N. (2015) Preliminary study of the biorefinery concept to obtain furfural and binder-less panels from hemp (Cannabis sativa L.) shives. Energy Procedia 72:34–41.CrossrefGoogle Scholar

  • European Parliament and Council (2010) European Parliament and Council Directive 2010/31/ES Energy performance of buildings.Google Scholar

  • Gravitis, J.A. (1987) Theoretical and applied aspects of the method of explosive autohydrolysis of plant biomass (in Russian). Khimia Dreveshini 5:3–21.Google Scholar

  • Hroudova, J., Zach, J. (2014) Acoustic and thermal insulating materials based on natural fibres used in floor construction. Int. J. Civil. Environ. Struct. Constr. Archit. Eng. 8:1152–1155.Google Scholar

  • ISO 8302 Thermal insulation – Determination of steady-state thermal resistance and related properties. Guarded hot plate apparatus, 2001.Google Scholar

  • Kosny, J., Yarbrough, D.W., Wilkes, K., Leuthold, D., Syad, A. (2006) PCM-Enhanced cellulose insulation – thermal mass in lightweight natural fibres. In: 2006 ECOSTOCK Conference IEA, DOE, June, Richard Stockton College of New Jersey, pp. 1–8.Google Scholar

  • Kymäläinen, H.R., Sjöberg, A.M. (2008) Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 43:1261–1269.Google Scholar

  • Latvian Academy of science (2006) [Online] Available: http://www.lza.lv/ZV/zv062000.htm#6 [Accessed: March 20. 2015].

  • Latvian Central Statistical Bureau (2015) [Online] Available: http://www.csb.gov.lv/dati/koku-sugas-latvijas-mezos-30236.html [Accessed: January 15. 2015].

  • Latvian State Environmental Service B permit environmental pollution. SIA VEREMS RSEZ file (2012) [Online] Available: ///C:/Users/User/Downloads/b-rsez-verems-re12ib0006%20(1).pdf [Accessed: January 15. 2015].Google Scholar

  • LVS EN 15103 (2010) Solid biofuels. Determination of bulk density.Google Scholar

  • Muzamal, M., Jedvert, K., Theliander, H., Rasmuson, A. (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66.Web of ScienceCrossrefGoogle Scholar

  • Overend, R.P., Chornet, E. (1987) Fractionation of Lignocellulosics by steam aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 321:523–536.Google Scholar

  • Paiva, P.J., Varum, A., Costa, H., Cruz, A., Pereira, D., Fernandes, S., Tavares, L., Jitendra, P.A. (2001) Corn’s cob as a potential ecological thermal insulation material. J. Energy Build. 43:1985–1990.Web of ScienceGoogle Scholar

  • Papadopoulos, A.M. (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build. 37:77–86.CrossrefGoogle Scholar

  • Schütt, F., Haas, N.P., Dehne, L., Koch, G., Janzon, R., Saake, B. (2013) Steam pretreatment for enzymatic hydrolysis of poplar wood: comparison of optimal conditions with and without SO2 impregnation. Holzforschung 67:9–17.Web of ScienceCrossrefGoogle Scholar

  • Schütt, F., Puls, J., Saake, B. (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459.Web of ScienceCrossrefGoogle Scholar

  • Sable, I., Grinfelds, U., Vikele, L., Rozenberga, L, Zeps, M., Luguza, S. (2015) Thermal insulation from hardwood residues. In: IOP Conference Series: Materials Science and Engineering 96 (conference 1, article 012027).Google Scholar

  • Stelte, W. (2013) Steam explosion for biomass pre-treatment. Report. Danish Technological Institute. [Online] Available: file:///C:/Users/User/Downloads/RK%20report%20steam%20explosion.pdf [Acessed January16.2015].Google Scholar

  • Tupciauskas, R., Veveris, A., Belkova, L., Gravitis, J., Tuherm, H. (2012) Grey alder pretreatment by steam explosion for self-adhesive composites. In: Proceedings of the 8th Meeting of the Northern European Network for Wood Science and Engineering (WSE), September 13–14, Kaunas, Lithuania. pp. 214–220.Google Scholar

  • Veveris, A.G., Erins P.P., Kaleine D.A., Polmanis, A.G. (1990) High-temperature auto-hydrolysis of wood. 1. Comparison of the behaviour of the main types of wood of the Latvian SSR (in Russian). Khimia Dreveshini 3:89–95.Google Scholar

  • Ye, Z. Wells, C.M., Carrington, C.G., Hewitt, N.J. (2006) Thermal conductivity of wool and wool-hemp insulation. Int. J. Energy Res. 30:37–49.CrossrefGoogle Scholar

About the article

Received: 2016-10-15

Accepted: 2017-05-23

Published Online: 2017-06-28

Published in Print: 2017-07-26


Citation Information: Holzforschung, Volume 71, Issue 7-8, Pages 641–644, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0188.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in