Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 7-8

Issues

About structural changes of lignin during kraft cooking and the kinetics of delignification

Cecilia Mattsson
  • Forest Products and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Merima Hasani
  • Forest Products and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
  • Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology, SE-100 44 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Binh Dang
  • Forest Products and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maxim Mayzel / Hans Theliander
  • Corresponding author
  • Forest Products and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
  • Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology, SE-100 44 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-31 | DOI: https://doi.org/10.1515/hf-2016-0190

Abstract

Wood meal was submitted to kraft cooking in a small-scale flow-through reactor and the structural changes of lignin have been investigated. The rate determining steps in kraft cooking were in focus. Based on two-dimensional nuclear magnetic resonance (2D-NMR) measurements on lignin fractions extracted at different cooking times from the black liquor, it was observed that the main lignin reactions occur within 10–20 min and thus the kinetics of the chemical reaction cannot be the rate-determining step. On the other hand, the molecular weight (MW) of lignin is shifted towards larger fragments in the course of cooking time but the MW decreases with increasing ionic strength. Obviously, the kinetics of the delignification are strongly dependent on solubility and/or mass transport at the cell wall level. At chip size level, the mass transport of cooking chemicals into the wood chip may influence the overall kinetics in the initial part of the cooking. At longer cooking times the concentration of chemicals becomes sufficiently high in the wood chips, and the delignification is progressively governed by solubility and/or mass transport of lignin molecules occurring at the cell wall level.

This article offers supplementary material which is provided at the end of the article.

Keywords: ATR-IR; 2D HSQC NMR; delignification; dissolved kraft lignin; flow-through reactor; kinetics; kraft pulping; softwood; structural characterization of lignin; wood meal

References

  • Alekhina, M., Ershova, O., Ebert, A., Heikkinen, S., Sixta, H. (2015) Softwood kraft lignin for value-added applications: Fractionation and structural characterization. Ind. Crops Prod. 66:220–228.Web of ScienceCrossrefGoogle Scholar

  • Balakshin, M., Capanema, E., Gracz, H., Chang, H.-M., Jameel, H. (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta. 233:1097–1110.Web of ScienceGoogle Scholar

  • Balakshin, M.Y., Capanema, E.A., Chen, C.L., Gracz, H.S. (2003) Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique. J. Agric. Food Chem. 51:6116–6127.CrossrefGoogle Scholar

  • Balakshin, M.Y., Capanema, E.A. (2015) Comprehensive strutural analysis of biorefinery lignin with a quantitative 13C NMR approach. RSC advances. 5:87187–87199.Google Scholar

  • Baptista, C., Robert, D., Duarte, A.P. (2006) Effect of pulping conditions on lignin structure from maritime pine kraft pulps. Chem. Eng. J. 121:153–158.CrossrefGoogle Scholar

  • Baptista, C., Robert, D., Duarte, A.P. (2008) Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps. Bioresour. Technol. 99:2349–2356.CrossrefGoogle Scholar

  • Bogren, J., Brelid, H., Bialik, M., Theliander, H. (2009a) Impact of dissolved sodium salts on kraft cooking reactions. Holzforschung. 63:226.Web of ScienceCrossrefGoogle Scholar

  • Bogren, J., Brelid, H., Karlsson, S., Theliander, H. (2009b) Can the delignification rate be affected by previously applied cooking conditions? Nord. Pulp Pap. Res. J. 24:25–32.CrossrefGoogle Scholar

  • Bui, N.Q., Fongarland, P., Rataboul, F., Dartiguelongue, C., Charon, N., Vallée, C., Essayem, N. (2015) FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: application to SC ethanol liquefaction of pine wood. Fuel Process. Technol. 134:378–386.CrossrefWeb of ScienceGoogle Scholar

  • Capanema, E.A., Balakshin, M.Y., Chang, H.-M., Jameel, H. (2008) Quantitative analysis of technical lignins by a combination of 1H-13C HMQC and 13C NMR methods. Proceedings of the International Conferences on Pulping, Papermaking Biotechnol. Nanjing, China. pp. 647–651.Google Scholar

  • Chakar, F.S., Ragauskas, A.J. (2004) Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20:131–141.CrossrefGoogle Scholar

  • Dang, B.T.T., Brelid, H., Köhnke, T., Theliander, H. (2014) Effect of sodium ion concentration profile during softwood kraft pulping on delignification rate, xylan retention and reactions of hexenuronic acids. Nord. Pulp Pap. Res. J. 29:604–611.CrossrefGoogle Scholar

  • Dang, B.T.T., Brelid, H., Theliander, H. (2016) The impact of ionic strength on the molecular weight distribution (MWD) of lignin dissolved during softwood kraft cooking in a flow-through reactor. Holzforschung 70:495–501.CrossrefWeb of ScienceGoogle Scholar

  • Faix, O. (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28.CrossrefGoogle Scholar

  • Froass, P.M., Ragauskas, A.J., Jiang Jian, E. (1998) NMR studies part 3: Analysis of lignins from modern kraft pulping technologies. Holzforschung 52:385–390.CrossrefGoogle Scholar

  • Gellerstedt, G., Lindfors, E.-L. (1984) Structural changes in lignin during kraft pulping. Holzforschung 38:151–158.CrossrefGoogle Scholar

  • Gellerstedt, G., Lindfors, E.-L. (1987) On the formation of enol ether structures in lignin during kraft cooking. Nord. Pulp Pap. Res. J. 2:71–75.CrossrefGoogle Scholar

  • Gellerstedt, G., Majtnerova, A., Zhang, L. (2004) Towards a new concept of lignin condensation in kraft pulping. Initial results. C. R. Biol. 327:817–826.Google Scholar

  • Gierer, J. (1980) Chemical aspects of kraft pulping. Wood Sci. Technol. 14:241–266.CrossrefGoogle Scholar

  • Gierer, J., Wännström, S. (1984) Formation of alkali-stahle C-C-bonds between lignin and carbohydrate fragments during kraft pulping. Holzforschung 38:181–184.CrossrefGoogle Scholar

  • Gustafson, R.R., Sleicher, C.A., McKean, W.T., Finlayson, B.A. (1983) Theoretical model of the kraft pulping process. Ind. Eng. Chem. Process Des. Dev. 22:87–96.CrossrefGoogle Scholar

  • Heitner, C., Dimmel, D., Schmidt, J.A. Lignin and Lignans: Advances in Chemistry. CRC Press, Taylor & Francis, Boca Raton, FL, 2010.Google Scholar

  • Iversen, T., Wännström, S. (1986) Lignin-carbohydrate bonds in a residual lignin isolated from pine kraft pulp. Holzforschung 40:19–22.CrossrefGoogle Scholar

  • Koskela, H., Heikkilä, O., Kilpeläinen, I., Heikkinen, S. (2010) Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers. J. Magn. Reson. 202:24–33.Web of ScienceGoogle Scholar

  • Kwasniewski, M., Theliander, H. (2001) Combined effect of heat transport and chemical kinetics on the delignification rate in wood chips. AIChE Annual Conference, Reno.Google Scholar

  • Labidi, A., Robert, D., Pla, F. (1993) Alkaline Delignification of hardwoods in a flow-through reactor working at a low residence time. Part VI. Characterization of kraft poplar lignins by 13C NMR. Holzforschung 47:213–218.CrossrefGoogle Scholar

  • Lawoko, M., Deshpande, S., van Heiningen, A.R.P. (2009) Pre-hydrolysis of the phenyl glycosidic bond in a model compound. Lenzinger Ber. 87:77–87.Google Scholar

  • Lawoko, M., Henriksson, G., Gellerstedt, G. (2005) Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6:3467–3473.CrossrefGoogle Scholar

  • Lindgren, C., Lindström, M.E. (1996) The kinetics of residual delignification and factors affecting the amount of residual lignin during kraft pulping. J. Pulp Pap. Sci. 22:290–295.Google Scholar

  • Lundquist, K. (1992) Proton (1H) NMR Spectroscopy. In: Methods in Lignin Chemistry. Eds. Lin, S.Y., Dence, C.W. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 242–249.Google Scholar

  • Mattsson, C., Andersson, S.-I., Belkheiri, T., Åmand, L.-E., Olausson, L., Vamling, L., Theliander, H. (2016) Using 2D NMR to characterize the structure of the low and high (1H) molecular weight fractions of bio-oil obtained from LignoBoost™ kraft lignin depolymerized in subcritical water. Biomass Bioenergy 95:364–377.CrossrefWeb of ScienceGoogle Scholar

  • McNaughton, J.G., Yean, W.Q., Goring, D.A.I. (1967) Macromolecular properties of kraft lignins from spruce made soluble by a continuous flow process. Tappi 50:584–553.Google Scholar

  • Norgren, M., Edlund, H., Wågberg, L., Annergren, G. (2002) Fundamental physical aspects on lignin dissolution. Nord. Pulp Pap. Res. J. 17:370–373.CrossrefGoogle Scholar

  • Obiaga, T.I., Wayman, M. (1973) Molecular weight distribution of lignin during alkaline pulping. Sven. Papperstidn. 76:699–703.Google Scholar

  • Pakkanen, H., Alén, R. (2012) Molecular mass distribution of lignin from the alkaline pulping of hardwood, softwood, and wheat straw. J. Wood Chem. Technol. 32:279–293.Web of ScienceCrossrefGoogle Scholar

  • Robert, D.R., Bardet, M., Gellerstedt, G., Lindfors, E.L. (1984) Structural changes in lignin during kraft cooking Part 3. On the Structure of dissolved lignins. J. Wood Chem. Technol. 4:239–263.CrossrefGoogle Scholar

  • Santos, B.R., Hart, W.P., Jameel, H., Chang, H. (2013) Wood based lignin reactions important to the biorefinery and pulp and paper industries. BioResources 8:1456–1477.CrossrefGoogle Scholar

  • Singh, K., Sivanandan, L. (2014) Changes in wood during mild thermal decay and its detection using ATR-IR: a review. J. Agric. Sci. Appl. 3:1–7.Google Scholar

  • Sjöholm, E., Gustafsson, K., Colmsjö, A. (1999a) Size exclusion chromatography of lignins using lithium chloride/N,N-dimethylacetamide as mobile phase. I. Dissolved and residual birch kraft lignins. J. Liq. Chromatogr. Relat. Technol. 22:1663–1685.CrossrefGoogle Scholar

  • Sjöholm, E., Gustafsson, K., Colmsjö, A. (1999b) Size xxclusion chromatography of lignins using lithium chloride/N,N-dimethylacetamide as mobile phase. II. Dissolved and residual pine kraft lignins. J. Liq. Chromatogr. Relat. Technol. 22:2837–2854.CrossrefGoogle Scholar

  • Sjöström, E. (1977) The behaviour of wood polysaccharides during alkaline pulping processes. Tappi. 60:151–154.Google Scholar

  • Tikka, P.O., Kovasin, K.K. (1990) Displacement vs conventional batch kraft pulping – delignification patterns and pulp strength delivery. Pap. Puu 72:773–779.Google Scholar

  • Zhang, L., Gellerstedt, G. (2007) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Reson. Chem. 45:37–45.CrossrefWeb of ScienceGoogle Scholar

  • Zhu, W., Theliander, H. (2015) Precipitation of lignin from softwood black liquor: an investigation of the equilibrium and molecular properties of lignin. BioResources. 10:1696–1714.CrossrefGoogle Scholar

About the article

Received: 2016-10-18

Accepted: 2017-02-27

Published Online: 2017-03-31

Published in Print: 2017-07-26


Citation Information: Holzforschung, Volume 71, Issue 7-8, Pages 545–553, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0190.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in