Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 71, Issue 9


Enzymatic grafting of kraft lignin as a wood bio-protection strategy. Part 2: effectiveness against wood destroying basidiomycetes. Effect of copper entrapment

Carmen Fernández-Costas / Sabrina PalantiORCID iD: http://orcid.org/0000-0002-9033-8827 / María Ángeles Sanromán / Diego MoldesORCID iD: http://orcid.org/0000-0001-6745-4320
Published Online: 2017-04-19 | DOI: https://doi.org/10.1515/hf-2016-0110


Enzymatic grafting of kraft lignin (KL) on wood surfaces is presented as a non-leachable wood protection treatment. Scots pine and European beech mini-blocks were treated with KL solution in the presence of laccase isolated from Myceliophthora thermophila and the formation of a stable interaction between wood and lignin was observed. Furthermore, the same strategy was employed to graft KL with the simultaneous entrapment of copper in the polymeric net formed. Enzymatic treatment diminished the leachability of the compounds in accordance with the EN 84 standard. The durability of the leached wood blocks was evaluated by accelerated decay tests. Samples with grafted lignin on the surface lost their antifungal activity in long-term exposure at the concentration tested. This observation is in contradiction to the preliminary tests, where KL seemed to have some biocidal activity. On the other hand, KL grafting in combination with copper entrapment improved the decay resistance and the copper leaching was reduced.

Keywords: antifungal activity; copper; Coniophora puteana; grafting; kraft lignin; laccase; leaching; Trametes versicolor


  • Bravery, A.F. (1978) A miniaturized wood-block test for the rapid evaluation of wood preservative fungicides. IRG/WP 2113. International Research Group on Wood Protection, Stockholm, Sweden.Google Scholar

  • Cheng, S.S., Lin, H.Y., Chang, S.T. (2005) Chemical composition and antifungal activity of essential oils from different tissues of Japanese cedar (Cryptomeria japonica). J. Agric. Food Chem. 53:614–619.Google Scholar

  • Chirkova, J., Andersone, I., Irbe, I., Spince, B., Andersons, B. (2011) Lignins as agents for bio-protection of wood. Holzforschung 65:497–502.Web of ScienceGoogle Scholar

  • Civardi, C., Schwarze, F.W.M.R., Wick, P. (2015) Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles. Environ. Pollut. 200:126–132.Web of ScienceGoogle Scholar

  • Cookson, L.J., Creffield, J.W., McCarthy, K.J., Scown, D.K. (2010) Trials on the efficacy of micronized copper in Australia. For. Prod. J. 60:6–12.Web of ScienceGoogle Scholar

  • Dumitrescu, L., Manciulea, I. (2009) New ecomaterials for wood preservation. Environ. Eng. Manage. J. 8:793–796.Google Scholar

  • European Committee for Standardization, EN 113. (1996) Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values.

  • European Committee for Standardization, EN 84. (1997) Wood preservatives. Accelerated ageing of treated wood prior to biological testing. Leaching procedure.

  • European Committee for Standardization, EN 335. (2013) Durability of wood and wood-based products. Use classes: definitions, application to solid wood and wood-based products.

  • Fernández-Costas, C., Gouveia, S., Sanromán, M.A., Moldes, D. (2014) Structural characterization of Kraft lignins from different spent cooking liquors by 1D and 2D Nuclear Magnetic Resonance spectroscopy. Biomass Bioenergy 63:156–166.Web of ScienceCrossrefGoogle Scholar

  • Fernández-Costas, C., Palanti, S., Sanromán, M.A., Moldes, D. (2017) Enzymatic grafting of kraft lignin as a wood bio-protection strategy. Part 1: factors affecting the process. Holzforschung 71:681–687.Google Scholar

  • Freeman, M.H., McIntyre, C.R. (2008) A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. Forest Prod. J. 58:6–27.Google Scholar

  • Gouveia, S., Fernández-Costas, C., Sanromán, M.A., Moldes, D. (2013) Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin. Bioresour. Technol. 131:288–294.Google Scholar

  • Green III, F., Clausen, C.A. (2005) Copper tolerance of brown-rot fungi: Oxalic acid production in southern pine treated with arsenic-free preservatives. Int. Biodeterior. Biodegrad. 56:75–79.Google Scholar

  • Gübitz, G.M., Paulo, A.C. (2003) New substrates for reliable enzymes: enzymatic modification of polymers. Curr. Opin. Biotechnol. 14:577–582.Google Scholar

  • Hashemi, S.K.H., Latibari, A.J. (2011) Evaluation and identification of walnut heartwood extractives for protection of poplar wood. BioResources 6:59–69.Google Scholar

  • Kalia, S., Thakur, K., Kumar, A., Celli, A. (2014) Laccase-assisted surface functionalization of lignocellulosics. J. Molec. Catal. B 102:48–58.Web of ScienceGoogle Scholar

  • Kamdem, D.P. (2008) Copper-based systems for exterior residential applications. ACS Symp. Ser. 982:427–439.Google Scholar

  • Lorenzo, M., Moldes, D., Rodríguez Couto, S., Sanromán, M.A. (2005) Inhibition of laccase activity from Trametes versicolor by heavy metals and organic compounds. Chemosphere 60:1124–1128.CrossrefGoogle Scholar

  • Mai, C., Kes, U., Militz, H. (2004) Biotechnology in the wood industry. Appl. Microbiol. Biotechnol. 63:477–494.Google Scholar

  • Palanti, S., Feci, E., Predieri, G., Francesca, V. (2012) Copper complexes grafted to amino-functionalized silica gel as wood preservatives against fungal decay: mini-blocks and standard test. BioResources 7:5611–5621.Google Scholar

  • Pâques, L.E., Charpentier, J.P. (2015) Perspectives for genetic improvement in heartwood size and extractive content in relation to natural durability and aesthetics in interspecific hybrid larch (Larix x eurolepis). Eur. J. For. Res. 134:857–868.Web of ScienceGoogle Scholar

  • Popa, V.I., Capraru, A.M., Grama, S., Malutan, T. (2011) Nanoparticles based on modified lignins with biocide properties. Cell. Chem. Technol. 45:221–226.Google Scholar

  • Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. (2014) Lignin valorization: Improving lignin processing in the biorefinery. Science 344:1246843.Web of ScienceGoogle Scholar

  • Rättö, M., Ritschkoff, A.C., Viikari, L. (2004) Enzymatically polymerized phenolic compounds as wood preservatives. Holzforschung 58:440–445.Google Scholar

  • Santiago-Rodríguez, L., Griggs, J.L., Bradham, K.D., Nelson, C., Luxton, T., Platten, W.E., III, Rogers, K.R. (2015) Assessment of the bioaccessibility of micronized copper wood in synthetic stomach fluid. Environ. Nanotechnol. Monit. Manag. 4:85–92.CrossrefGoogle Scholar

  • Singh, T., Singh, A.P. (2012) A review on natural products as wood protectant. Wood Sci. Technol. 46:851–870.Web of ScienceCrossrefGoogle Scholar

  • Ungureanu, E., Capraru, A.M., Ungureanu, O., Juareanu, D.C., Iacob, V., Ulea, E., Popa, V.I. (2012) Ecological biocide systems based on unmodified and epoxydation lignins, furan resin and copper. Cell. Chem. Technol. 46:599–603.Google Scholar

  • Widsten, P., Heathcote, C., Kandelbauer, A., Guebitz, G., Nyanhongo, G.S., Prasetyo, E.N., Kudanga, T. (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem. 45:1072–1081.Web of ScienceGoogle Scholar

About the article

Received: 2016-07-11

Accepted: 2017-03-14

Published Online: 2017-04-19

Published in Print: 2017-08-28

Citation Information: Holzforschung, Volume 71, Issue 9, Pages 689–695, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0110.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Carmen Fernández-Costas, Sabrina Palanti, Jean-Paul Charpentier, María Ángeles Sanromán, and Diego Moldes
ACS Sustainable Chemistry & Engineering, 2017

Comments (0)

Please log in or register to comment.
Log in