Akhtaruzzaman, A., Virkola, N. (1979) Influence of chip dimensions in kraft pulping. I. Mechanism of movement of chemicals into chips. Paperi Puu 61:578–580. Google Scholar

Al-Dajani, W., Tschirner, U. (2008) Pre-extraction of hemicelluloses and subsequent kraft pulping. Part I: alkaline extraction. Tappi J. 7:3–8. Google Scholar

Alfredsson, B., Samuelson, O. (1968) Hydroxy acids formed by alkali treatment of hydrocellulose. Svensk Papperstidn. 71:679–686. Google Scholar

Brännvall, E. (2017) The limits of delignification in Kraft cooking. BioRes 12:2081–2107. Google Scholar

Brännvall, E., Bäckström, M. (2016) Improved impregnation efficiency and pulp yield of softwood kraft pulp by high effective alkali charge in the impregnation stage. Holzforschung 70:1031–1037. Web of ScienceGoogle Scholar

Chiang, V. Cho, H., Puumala, R., Eckert, R., Fuller, W. (1987) Alkali consumption during kraft pulping of Douglas fir, western hemlock, and red alder. Tappi 2:101–104. Google Scholar

Costa, M.M., Gomide, J.L., Colodette, J.L., Lucia, L.A., Mutjé, P. (2008) An empirical mathematical model for the predictive analysis of the chemical absorption of hydroxide in Eucalyptus wood. Ind. Eng. Chem. Res. 47:3856–3860. CrossrefWeb of ScienceGoogle Scholar

Costanza, V., Zanuttini, M. (2004) Optimal operating points in alkaline pulping. Latin American Appl. Res. 34:155–164. Google Scholar

Dang, V., Nguyen, K. (2008) A universal kinetic model for characterisation of the effect of chip thickness on kraft pulping. Bioresource Technol. 99:1486–1490. Web of ScienceCrossrefGoogle Scholar

Egas, A., Simão, J., Costa, I., Francisco, S., Castro, J. (2002) Experimental methodology for heterogeneous studies in pulping of wood. Ind. Eng. Chem. Res. 41:2529–2534. CrossrefGoogle Scholar

Enqvist, E. (2006) Impregnation, vapor phase and methanol as means of intensifying the softwood kraft pulping process. PhD Thesis Helsinki University of Technology, reports Series A30. Google Scholar

Fabbri, D., Helleur, R. (1999) Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J. Anal. Appl. Pyrolysis 49:277–293. CrossrefGoogle Scholar

Grénman, H., Wärnå, J., Mikkola, J.P., Sifontes, V., Fardim, P., Murzin, D.Y., Salmi, T. (2010) Modeling the influence of wood anisotropy and internal diffusion on delignification kinetics. Ind. Eng. Chem. Res. 49:9703–9711. Web of ScienceCrossrefGoogle Scholar

Gullichsen, J., Kolehmainen, H., Sundqvist, H. (1992) On the nonuniformity of the kraft cook. Paperi Puu 74:486–490. Google Scholar

Gullichsen, J., Hyvärinen, R., Sundqvist, H. (1995) On the nonuniformity of the kraft cook. Part 2. Paperi Puu 77:331–337. Google Scholar

Haas, D., Hruitfiord, B., Sarkanen, K. (1967) Kinetic study on the alkaline degradation of cotton hydrocellulose. J Appl. Polym. Chem. 11:587–600. CrossrefGoogle Scholar

Inalbon, M., Mocchiutti, P. Zanuttini, M. (2009a) The deacetylation reaction in Eucalyptus wood: kinetics and effects on the effective diffusion. Holzforschung 67:241–246. Google Scholar

Inalbon, M., Mussati, M., Zanuttini, M. (2009b) Experimental and theoretical analysis of the alkali impregnation of eucalyptus. Ind. Eng. Chem. Res. 48:4791–4795. Web of ScienceCrossrefGoogle Scholar

Inalbon, M., Montagna, P., Galván, M., Demonte, L., Zanuttini, M. (2013) Wood capillarity and deacetylation during eucalyptus alkaline impregnation. Sulphidity effects and comparison between transverse directions. Biores. Technol. 100: 2254–2258. Google Scholar

Käkölä, J., Alén, R., Pakkanen, H., Matilainen, R., Lahti, K. (2007) Quantitative determination of the main aliphatic carboxylic acids in wood kraft black liquors by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 1139:263–270. Web of SciencePubMedCrossrefGoogle Scholar

Käkölä, J., Alén, R., Isoaho, J., Matilainen, R. (2008) Determination of low-molecular-mass aliphatic carboxylic acids and inorganic anions from kraft black liquors by ion chromatography. J. Chromatogr. A 1190:150–156. Web of ScienceCrossrefPubMedGoogle Scholar

Karlström, K. (2009) Extended impregnation kraft cooking of softwood: effects on reject, yield, pulping uniformity, and physical properties. Licentiate thesis, KTH, Stockholm, Sweden. Google Scholar

Kolavali, R., Theliander, H. (2013) Determination of the diffusion of monovalent cations into wood under isothermal conditions based on LiCl impregnation of Norway spruce. Holzforschung 67:559–565. Web of ScienceGoogle Scholar

Kolavali, R., Hasani, M. (2017) The sorption of monovalent cations onto wood flour and holocelluloses of Norway spruce: molecular interactions during LiCl impregnation. Holzforschung 71:373–381. Web of ScienceGoogle Scholar

Kuitunen, S., Vuorinen, T., Alopaeus, V. (2013) The role of Donnan effect in kraft cooking liquor impregnation and hot water extraction of wood. Holzforschung 67:511–521. Web of ScienceGoogle Scholar

Lehto, J., Alén, R. (2015) Alkaline pre-treatment of softwood chips prior to delignification. J. Wood Chem. Technol. 35:46–155. Web of ScienceGoogle Scholar

Li, J., Moeser, G., Roen, L. (2000) Nonuniformity of carbohydrate degradation during kraft pulping – measurement and modeling using a modified G-factor. Ind. Eng. Chem. Res. 39:916–921. CrossrefGoogle Scholar

Löwendahl, L., Petersson, G., Samuelson, O. (1976) Formation of carboxylic acids by degradation of carbohydrates during kraft cooking of pine. Tappi 59:118–121. Google Scholar

Määttänen, M., Tikka, P. (2012) Determination of phenomena involved in impregnation of softwood chips. Part 2. Alkali uptake, alkali consumption, and impregnation yield. Nord. Pulp Paper Res. J. 27:559–567. CrossrefGoogle Scholar

MacLeod, M. (2007) The top ten factors in kraft pulp yield. Paperi Puu 89:1–7. Google Scholar

Malinen, R., Sjöström, E. (1975) The mass spectra of trimethylsilylated D-glucopyranosylaldonic acid lactones. Carbohyd. Res. 39:335–340. CrossrefGoogle Scholar

Montagna, P.N., Nieminen, K., Inalbon, M.C., Sixta, H., Zanuttini, M.A. (2016) Profiles of alkali concentration and galactoglucomannan degradation in kraft impregnation of Scots pine wood: experimental observations and modeling. Holzforschung 70:1–9. Web of ScienceGoogle Scholar

Nieminen, K., Paananen, M., Sixta, H. (2014) Kinetic model for carbohydrate degradation and dissolution during kraft pulping, Ind. Eng. Chem. Res. 53:11292–11302. CrossrefGoogle Scholar

Paananen, M., Tamminen, T., Nieminen, K., Sixta, H. (2010) Galactoglucomannan stabilization during the initial kraft cooking of Scots pine. Holzforschung 64:683–692. Web of ScienceGoogle Scholar

Paananen, M., Liitiä, T., Sixta, H. (2013) Further insight into carbohydrate degradation and dissolution behavior during kraft cooking under elevated alkalinity without and in the presence of anthraquinone. Ind. Eng. Chem. Res. 52: 12777–12784. CrossrefWeb of ScienceGoogle Scholar

Pakkanen, H., Alén, R. (2013) Alkali consumption of aliphatic carboxylic acids during alkaline pulping of wood and nonwood feedstocks. Holzforschung 67:643–650. Google Scholar

Pu, Q., McKean, W., Gustafson, R. (1991) Kinetic model of softwood kraft pulping and simulation of RDH process. Appita General Conf. 2:187–194. Google Scholar

Sjöström, E., Janson, J., Haglund, P., Enström, B. (1965) The acidic groups in wood and pulp as measured by ion exchange. J. Polym. Sci. Part C 11:221–241. CrossrefGoogle Scholar

Tavast, D., Brännvall, E. (2017) Increased pulp yield by prolonged impregnation in softwood kraft pulping. Nord. Pulp Paper Res. J. 32:14–20. Web of ScienceCrossrefGoogle Scholar

Tikka, P., Kovasin, K. (1990) Displacement vs. conventional batch kraft pulping: delignification patterns and pulp strength delivery. Paperi Puu 72:773–779. Google Scholar

Uusitalo, P., Svedman, M. (2000) Batch cooking applications. In: Papermaking Science and Techmology. Eds. Gullichsen, J., Paulapuro, H. 6A. Fapet Oy, Helsinki. pp. A493–A510. Google Scholar

Wedin, H., Ragnar, M., Lindström, M. (2010) Extended impregnation in the kraft cook: an approach to improve the overall yield in eucalypt kraft pulping. Nord. Pulp Paper Res. J. 25:7–14. CrossrefGoogle Scholar

Wedin, H., Sevastyanova, O., Evtuguin, D., Ragnar, M., Lindström, M. (2013) Impact of extended-impregnation cooking on the xylan structure in *Eucalyptus urograndis* kraft pulps. Nord. Pulp Paper Res. J. 28:498–505. CrossrefGoogle Scholar

Wizani, W., Eder, S., Sinner, M. (1992) The EnerBatch Kraft pulping process – Progress in Pulp Uniformity and Extended Delignification. Tappi Pulping Conf. Nov. 1–5, Boston, USA. 3, pp. 1037. Google Scholar

Zanuttini, M., Citroni, M., Martinez, M., Marzocchi, V. (1998) Chemimechanical pulping of poplar wood: alkaline wood pretreatment at low temperature. Holzforschung 52:405–409. CrossrefGoogle Scholar

Zanuttini, M., Citroni, M., Marzocchi, V. (2000) Pattern of alkali impregnation of poplar wood at moderate conditions. Holzforschung 54:631–636. Google Scholar

Zanuttini, M., Marzocchi, V., Citroni, M., Mocchiutti, P. (2003) Alkali impregnation of hardwoods. Part I: moderate treatment of poplar wood. J. Pulp Paper Sci. 29:313. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.