Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 72, Issue 4


Improvement of beech wood properties by in situ formation of polyesters of citric and tartaric acid in combination with glycerol

Clément L’Hostis
  • LERMAB, EA 4370, Université de Lorraine, Faculté des Sciences et Technologies, BP 70 239, F-54506 Vandœuvre-lès-Nancy, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie-France Thévenon
  • CIRAD, UR BioWooEB, TA B-114/16, 73 Rue Jean-François Breton, F-34398 Montpellier CEDEX 5, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emmanuel Fredon
  • Corresponding author
  • LERMAB, EA 4370, Université de Lorraine, Faculté des Sciences et Technologies, BP 70 239, F-54506 Vandœuvre-lès-Nancy, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philippe Gérardin
  • LERMAB, EA 4370, Université de Lorraine, Faculté des Sciences et Technologies, BP 70 239, F-54506 Vandœuvre-lès-Nancy, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-01 | DOI: https://doi.org/10.1515/hf-2017-0081


Beech wood has been treated by impregnation followed by heating at various temperatures with solutions containing citric acid (CA) or tartaric acid (TA) alone or in combination with glycerol (G), i.e. with G+CA and G+TA. The resulting modified woods were tested in terms of resistance to leaching, durability and dimensional stability. These properties are improved as a function of heating temperature, which leads to higher levels of poly-esterification involving grafting onto wood simultaneously with thermal degradation of wood. Dimensional stability of all treated wood was increased, but glycerol does not have a positive effect with this regard. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy contributed to understanding the effects of the different treatments. In situ polymerization of G+TA at 140°C increased the bending resistance, while G+CA polymerization does not compensate notably the mechanical weakness induced by thermal degradation of wood at higher temperatures. However, G+CA treatment is more efficient regarding leaching and decay resistance, than that with G+TA.

Keywords: ATR-FTIR spectroscopy; bio-based polyesters; citric acid; decay resistance; dimensional stability; glycerol; heat treatment; tartaric acid; wood modification


  • Adeoye, A.O., Lateef, A., Gueguim-Kana, E.B. (2015) Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 4:568–574.Web of ScienceGoogle Scholar

  • Alfredsen, G., Pilgard, A., Fossdal, C.G. (2016) Characterisation of Postia placenta colonisation during 36 weeks in acetylated southern yellow pine sapwood at three acetylation levels including genomic DNA and gene expression quantification of the fungus. Holzforschung 70:1055–1065.Web of ScienceGoogle Scholar

  • Bischof, V.S., Katovic, D., Schramm, C., Trajkovic, J., Sefc, B. (2006) Polycarboxylic acids as non-formaldehyde anti-swelling agents for wood. Holzforschung 60:439–444.Google Scholar

  • Bosso, A., Panero, L., Petrozziello, M., Sollazzo, M., Asproudi, A., Motta, S., Guaita, M. (2015) Use of polyaspartate as inhibitor of tartaric precipitations in wines. Food Chem. 185:1–6.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Bravery, A. (1978) A miniaturised wood-block test for the rapid evaluation of wood preservative fungicides. IRG Special seminar on screening techniques for potential wood preservative chemicals, IRG/WP 2113, 9 pp.Google Scholar

  • Brosse, N., El Hage, R., Chaouch, M., Petrissans, M., Dumarcay, S., Gerardin, P. (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym. Degrad. Stab. 95:1721–1726.CrossrefGoogle Scholar

  • Buchelt, B., Dietrich, T., Wagenführ, A. (2014) Testing of set recovery of unmodified and furfurylated densified wood by means of water storage and alternating climate tests. Holzforschung 68:23–28.Web of ScienceGoogle Scholar

  • Candelier, K., Dumarçay, S., Pétrissans, A., Desharnais, L., Gérardin, P., Pétrissans, M. (2013) Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: nitrogen or vacuum. Polym. Degrad. Stab. 98:677–681.CrossrefGoogle Scholar

  • Candelier, K., Hannouz, S., Thévenon, M.-F., Guibal, D., Gérardin, P., Pétrissans, M., Collet, R. (2017) Resistance of thermally modified ash (Fraxinus excelsior L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termites. Eur. J. Wood Wood Prod. 75:249–262.CrossrefWeb of ScienceGoogle Scholar

  • Chu, D., Mu, J., Zhang, L., Li, Y. (2017a) Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 1: color generation, dimensional stability, and fire retardancy. Holzforschung 71:207–215.Google Scholar

  • Chu, D., Mu, J., Zhang, L., Li, Y. (2017b) Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 2: hygroscopicity, leaching resistance, and thermal stability. Holzforschung 71:217–223.Google Scholar

  • De Giglio, E., Bonifacio, M.A., Cometa, S., Vona, D., Mattioli-Belmonte, M., Dicarlo, M., Ceci, E., Fino, V., Cicco, S.R., Farinola, G.M. (2015) Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment. Colloids Surf. B Biointerfaces 136:600–611.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Despot, R., Hasan, M., Jug, M., Šefc, B. (2008) Biological durability of wood modified by citric acid. Drv. Ind. Sci. J. Wood Technol. 59:55–59.Google Scholar

  • Dimou, C., Kopsahelis, N., Papadaki, A., Papanikolaou, S., Kookos, I.K., Mandala, I., Koutinas, A.A. (2015) Wine lees valorization: biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Res. Int. 73:81–87.Web of ScienceCrossrefGoogle Scholar

  • Esteves, B., Pereira, H. (2008) Wood modification by heat treatment: a review. BioResources 4:370–404.Google Scholar

  • Franklin, D.S., Guhanathan, S. (2015) Influence of chain length of diol on the swelling behavior of citric acid based pH sensitive polymeric hydrogels: a green approach. J. Appl. Polym. Sci. 132:41403.Web of ScienceGoogle Scholar

  • Halpern, J.M., Urbanski, R., Weinstock, A.K., Iwig, D.F., Mathers, R.T., von Recum, H.A. (2014) A biodegradable thermoset polymer made by esterification of citric acid and glycerol. J. Biomed. Mater. Res. A 102:1467–1477.Web of SciencePubMedCrossrefGoogle Scholar

  • Hosseinpourpia, R., Mai, C. (2016) Mode of action of brown rot decay resistance of thermally modified wood: resistance to Fenton’s reagent. Holzforschung 70:691–697.Web of ScienceGoogle Scholar

  • Kim, J.S., Gao, J., Terziev, N., Cuccui, I., Daniel, G. (2015a) Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: I. Histo/cytochemical studies on changes in the structure and lignin chemistry. Holzforschung 69:603–613.Google Scholar

  • Kim, J.S., Gao, J., Terziev, N., Allegretti, O., Daniel, G. (2015b) Chemical and ultrastructural changes of ash wood thermally modified (TMW) using the thermo-vacuum process: II. Immunocytochemical study of the distribution of noncellulosic polysaccharides. Holzforschung 69:615–625.Google Scholar

  • Konai, N., Pizzi, A., Raidandi, D., Lagel, M.C., L’Hostis, C., Saidou, C., Hamido, A., Abdalla, S., Bahabri, F., Ganash, A. (2015) Aningre (Aningeria spp.) tannin extract characterization and performance as an adhesive resin. Ind. Crops Prod. 77:225–231.Web of ScienceCrossrefGoogle Scholar

  • Lande, S., Westin, M., Schneider, M. (2004) Properties of furfurylated wood. Scand. J. For. Res. 19:22–30.CrossrefGoogle Scholar

  • Li, T., Cai, J.-B., Avramidis, S., Cheng, D.-l., Wålinder, M.E.P., Zhou, D.-G. (2017) Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood. Holzforschung 71:515–520.Web of ScienceGoogle Scholar

  • Liu, R., Peng, Y., Cao, J., Chen, Y. (2014) Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Compos. Sci. Technol. 103:1–7.CrossrefWeb of ScienceGoogle Scholar

  • Liu, X.Y., Timar, M.C., Varodi, A.M., Sawyer, G. (2017) An investigation of accelerated temperature-induced ageing of four wood species: colour and FTIR. Wood Sci. Technol. 51:357–378.CrossrefWeb of ScienceGoogle Scholar

  • Moghaddam, M., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016) Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung 70:69–77.Web of ScienceGoogle Scholar

  • NF X 41-568. (2014) AFNOR, Wood preservatives – Laboratory method for obtaining samples for analysis to measure losses by leaching into water or synthetic sea water.Google Scholar

  • Noël, M., Fredon, E., Mougel, E., Masson, D., Masson, E., Delmotte, L. (2009a) Lactic acid/wood-based composite material. Part 1: synthesis and characterization. Bioresour. Technol. 100: 4711–4716.Google Scholar

  • Noël, M., Mougel, E., Fredon, E., Masson, D., Masson, E. (2009b) Lactic acid/wood-based composite material. Part 2: physical and mechanical performance. Bioresour. Technol. 100:4717–4722.Google Scholar

  • Noordover, B.A.J., Duchateau, R., van Benthem, R.A.T.M., Ming, W., Koning, C.E. (2007) Enhancing the functionality of biobased polyester coating resins through modification with citric acid. Biomacromolecules 8:3860–3870.CrossrefWeb of SciencePubMedGoogle Scholar

  • Okoye, P.U., Hameed, B.H. (2016) Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew. Sustain. Energy Rev. 53:558–574.CrossrefGoogle Scholar

  • Pandey, K.K., Pitman, A.J. (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 52:151–160.CrossrefGoogle Scholar

  • Ringman, R., Pilgård, A., Brischke, C., Richter, K. (2014) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:239–246.Web of ScienceGoogle Scholar

  • Rowell, R.M. (2014) Acetylation of wood – a review. Int. J. Lignocellul. Prod. 1:1–27.Google Scholar

  • Santoni, I., Callone, E., Sandak, A., Sandak, J., Dire, S. (2015) Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydr. Polym. 117:710–721.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Šefc, B., Trajković, J., Hasan, M., Katović, D., Bischof Vukušić, S., Frančić, M. (2009) Dimensional stability of wood modified by citric acid using different catalysts. Drv. Ind. Sci. J. Wood Technol. 60:23–26.Google Scholar

  • Šefc, B., Trajković, J., Sinković, T., Hasan, M., Ištok, I. (2012) Compression strength of fir and beech wood modified by citric acid. Drv. Ind. 63:45–50.CrossrefWeb of ScienceGoogle Scholar

  • Sivrikaya, H., Can, A., de Troya, T., Conde, M. (2015) Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas-Cienc. Tecnol. 17:559–570.Web of ScienceGoogle Scholar

  • Sonderegger, W., Mannes, D., Kaestner, A., Hovind, J., Lehmann, E. (2015) On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung 69:87–95.Web of ScienceGoogle Scholar

  • Tjeerdsma, B.F., Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst. 63:102–111.CrossrefGoogle Scholar

  • Tomak, E.D., Ustaomer, D., Yildiz, S., Pesman, E. (2014) Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 53:30–39.CrossrefWeb of ScienceGoogle Scholar

  • Tondi, G., Petutschnigg, A. (2015) Middle infrared (ATR FT-MIR) characterization of industrial tannin extracts. Ind. Crops Prod. 65:422–428.CrossrefWeb of ScienceGoogle Scholar

  • Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:773–778.Google Scholar

  • Yates, M.R., Barlow, C.Y. (2013) Life cycle assessments of biodegradable, commercial biopolymers – a critical review. Resour. Conserv. Recycl. 78:54–66.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-05-18

Accepted: 2017-11-01

Published Online: 2017-12-01

Published in Print: 2018-03-28

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 72, Issue 4, Pages 291–299, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0081.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

E. Larnøy, A. Karaca, L. R. Gobakken, and C. A. S. Hill
International Wood Products Journal, 2018, Page 1
Quan Li, Liping Xu, Hui Wu, Jing Liu, Jinguo Lin, and Xin Guan
Holzforschung, 2018, Volume 72, Number 6, Page 459

Comments (0)

Please log in or register to comment.
Log in