Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 72, Issue 7


Effects of a layered structure on the physicomechanical properties and extended creep behavior of bamboo-polypropylene composites (BPCs) determined by the stepped isostress method

Chin-Yin Hsu / Teng-Chun Yang / Tung-Lin Wu / Ke-Chang Hung / Jyh-Horng Wu
Published Online: 2018-04-06 | DOI: https://doi.org/10.1515/hf-2017-0165


A layered bamboo-plastic composite (BPC) consisting of bamboo (Phyllostachys makinoi) particles and polypropylene was investigated. The influence of the layering conditions, including the thickness and bamboo content in various layers, was the focus in terms of the physicomechanical and creep properties of the BPCs. The results showed that a three-layered BPC (BPC3L) with a 1:3:1 thickness ratio and with top/bottom layer containing 40% bamboo exhibited the best specific flexural properties. An accelerated creep test approach was applied, known as the short-term stepped isostress method (SSM), to predict the long-term creep behavior of BPC3L. The results indicated that the creep master curves, which are constructed from different SSM testing parameters, agree well with the long-term experimental creep data and that the creep resistance of homogeneous single-layered BPC was better than that of BPC3L.

Keywords: bamboo particle; creep behavior; layered structural composite; polypropylene; stepped isostress method


  • Abdel-Mohti, A., Garbash, A.N., Almagahwi, S., Shen, H. (2015) Effect of layer and film thickness and temperature on the mechanical property of micro- and nano-layered PC/PMMA films subjected to thermal aging. Materials 8:2062–2075.Web of ScienceCrossrefGoogle Scholar

  • Achereiner, F., Engelsing, K., Bastian, M., Heidemeyer, P. (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym. Testing 32:447–454.CrossrefWeb of ScienceGoogle Scholar

  • Adhikary, K.B., Pang, S., Staiger, M.P. (2008) Dimensional stability and mechanical behavior of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Part B 39:807–815.CrossrefGoogle Scholar

  • Altenbach, H. (1998) Theories for laminated and sandwich plates. Mech. Compos. Mater. 34:243–252.CrossrefGoogle Scholar

  • Alwis, K.G.N.C., Burgoyne, C.J. (2008) Accelerated creep testing for aramid fibres using the stepped isothermal method. J. Mater. Sci. 43:4789–4800.CrossrefWeb of ScienceGoogle Scholar

  • Ashori, A., Sheshmani, S. (2010) Hybrid composites made from recycled materials: moisture absorption and thickness swelling behavior. Bioresour. Technol. 101:4717–4720.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Chen, H.C., Chen, T.Y., Hsu, C.H. (2006) Effects of wood particle size and mixing ratios of HDPE on the properties of the composites. Eur. J. Wood Wood Prod. 64:172–177.CrossrefGoogle Scholar

  • Cheng, H., Gao, J., Wang, G., Shi, S.Q., Zhang, S., Cai, L. (2015) Enhancement of mechanical properties of composites made of calcium carbonate modified bamboo fibers and polypropylene. Holzforschung 69:215–221.Web of ScienceGoogle Scholar

  • Clemons, C.M., Idach, R.E. (2004) Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Prod. J. 54:50–57.Google Scholar

  • Das, M., Chakraborty, D. (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibres due to alkali treatment. J. Appl. Polym. Sci. 107:522–527.CrossrefGoogle Scholar

  • Dasappa, P., Lee-Sullivan, P., Xiao, X. (2009) Temperature effects on creep behavior of continuous fiber GMT composites. Compos. Part A 40:1071–1081.Web of ScienceCrossrefGoogle Scholar

  • Deshpande, A.P., Bhaskar Rao, M., Laksjmana Rao, C. (2000) Extraction of bamboo fibers and their use as reinforcement in polymeric composites. J. Appl. Polym. Sci. 76:83–92.CrossrefGoogle Scholar

  • Dittenber, D.B., Ganga Rao, H.V.S. (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A 43:1419–1429.CrossrefWeb of ScienceGoogle Scholar

  • Espert, A., Vilaplana, F., Karlsson, S. (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A 35:1267–1276.CrossrefGoogle Scholar

  • Giannopoulos, I.P., Burgoyne, C.J. (2011) Prediction of the long-term behaviour of high modulus fibres using the stepped isostress method (SSM). J. Mater. Sci. 46:7660–7671.CrossrefWeb of ScienceGoogle Scholar

  • Giannopoulos, I.P., Burgoyne, C.J. (2012) Accelerated and real-time creep and creep-rupture results for aramid fibers. J. Appl. Polym. Sci. 125:3856–3870.CrossrefWeb of ScienceGoogle Scholar

  • Hadid, M., Rechak, S., Tati, A. (2004) Long-term bending creep behavior prediction of injection molded composite using stress-time correspondence principle. Mater. Sci. Eng. A 385:54–58.CrossrefGoogle Scholar

  • Hadid, M., Guerira, B., Bahri, M., Zouani, A. (2014) Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics. Polym. Testing 34:113–119.Web of ScienceCrossrefGoogle Scholar

  • Hung, K.-C., Wu, J.-H. (2010) Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. J. Wood Sci. 56:216–221.CrossrefWeb of ScienceGoogle Scholar

  • Hung, K.-C., Wu, T.-L., Chen, Y.-L., Wu, J.-H. (2015) Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Constr. Build. Master. 108:139–145.Google Scholar

  • Jones, C.J.F.P., Clarke, D. (2007) The residual strength of geosynthetic reinforcement subjected to accelerated creep testing and simulated seismic events. Geotext. Geomembr. 25:155–169.CrossrefWeb of ScienceGoogle Scholar

  • Kazemi, Y., Cloutier, A., Rodrigue, D. (2013) Design analysis of three-layered structural composites based on post-consumer recycled plastics and wood residues. Compos. Part A 53:1–9.CrossrefWeb of ScienceGoogle Scholar

  • Keener, T.J., Stuart, R.K., Brown, T.K. (2004) Maleated coupling agents for natural fibre composites. Compos. Part A 35:357–362.CrossrefGoogle Scholar

  • Klyosov, A. Wood-Plastic Composites. John Wiley & Sons, New Jersey, 2007.Google Scholar

  • Kumar, V., Tyagi, L., Sinha, S. (2011) Wood flour – reinforced plastic composites: a review. Rev. Chem. Eng. 27:253–264.Web of ScienceGoogle Scholar

  • Lee, C.-H., Wu, T.-L., Chen, Y.-L., Wu, J.-H. (2010) Characteristics and discrimination of five types of wood-plastic composites by Fourier transform infrared spectroscopy combined with principal component analysis. Holzforschung 64:699–704.Google Scholar

  • Li, Y., Yin, L., Huang, C., Meng, Y., Fu, F., Wang, S., Wu, Q. (2015) Quasi-static and dynamic nanoindentation to determine the influence of thermal treatment on the mechanical properties of bamboo cell walls. Holzforschung 69:909–914.Web of ScienceGoogle Scholar

  • Li, Y., Huang, C., Wang, L., Wang, S., Wang, X. (2017) The effects of thermal treatment on the nanomechanical behavior of bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) cell walls observed by nanoindentation, XRD, and wet chemistry. Holzforschung 71:129–135.Web of ScienceGoogle Scholar

  • Liu, H., Jiang, Z., Fei, B., Hse, C., Sun, Z. (2015a) Tensile behaviour and fracture mechanism of moso bamboo (Phyllostachys pubescens). Holzforschung 69:47–52.Web of ScienceGoogle Scholar

  • Liu, W., Chen, T., Xie, T., Lai, F., Qiu, R. (2015b) Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites. Holzforschung 69:449–455.Web of ScienceGoogle Scholar

  • Luo, S., Netravail, A.N. (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J. Mater. Sci. 34:3709–3719.CrossrefGoogle Scholar

  • Oksman, K., Skrifvars, M., Selin, J.F. (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63:1317–1324.CrossrefGoogle Scholar

  • Okubo, K., Fujii, T., Yamamoto, Y. (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos. Part A 35:377–383.CrossrefGoogle Scholar

  • Raghavan, J., Meshii, M. (1994) Activation theory for creep of matrix resin and carbon fiber-reinforced polymer composites. J. Mater. Sci. 29:5078–5084.CrossrefGoogle Scholar

  • Raghavan, J., Meshii, M. (1998) Creep of polymer composites. Compos. Sci. Technol. 57:1673–1688.CrossrefGoogle Scholar

  • Rowell, R.M. (1983) Chemical modification of wood. For. Prod. Abstr. 6:363–382.Google Scholar

  • Saba, N., Paridah, M.T., Jawaid, M. (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr. Build. Mater. 76:87–96.CrossrefWeb of ScienceGoogle Scholar

  • Scurlock, J.M.O., Dayton, D.C., Hames, B. (2000) Bamboo: an overlooked biomass resource? Biomass Bioenerg. 19:229–244.CrossrefGoogle Scholar

  • Tanks, J.D., Rader, K.E., Sharp, S.R. (2017) Accelerated creep and creep-rupture testing of transverse unidirectional carbon/epoxy lamina based on the stepped isostress method. Compos. Struct. 159:455–462.Web of ScienceCrossrefGoogle Scholar

  • Verhey, S.A., Laks, P.E., Richter, D.L. (2001) The effect of composition on the decay resistance of model woodfiber-thermoplastic composites. In: Sixth International Conference on Woodfiber-Plastic Composites, Madison, Wisconsin. pp. 79–86.Google Scholar

  • Wang, H., An, X., Li, W., Wang, H., Yu, Y. (2014) Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms. Holzforschung 68:291–297.Web of ScienceGoogle Scholar

  • Wang, H., Zhang, X., Jiang, Z., Yu, Z., Yu, Y. (2016) Isolating nanocellulose fibrills from bamboo parenchymal cells with high intensity ultrasonication. Holzforschung 70:401–409.Web of ScienceGoogle Scholar

  • Xu, B., Simonsen, J., Rochefort, W.E. (2001) Creep resistance of wood-filled polystyrene/high-density polyethylene blends. J. Appl. Polym. Sci. 79:418–425.CrossrefGoogle Scholar

  • Yang, G., Zhang, Y., Shao, H., Hu, X. (2009) A comparative study of bamboo Lyocell fiber and other regenerated cellulose fibers. Holzforschung 63:18–22.Web of ScienceGoogle Scholar

  • Yang, T.-C., Wu, T.-L., Hung, K.-C., Chen, Y.-L., Wu, J.-H. (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time-temperature superposition principle. Constr. Build. Master. 93:558–563.CrossrefGoogle Scholar

  • Yeo, S.S., Hsuan, Y.G. (2009) Predicting the creep behavior of high density polyethylene geogrid using stepped isothermal method. In: Service Life Prediction of Polymeric Materials: Global Perspectives. Eds. Martin, J.W., Ryntz, R.A., Chin, J., Dickie, R.A. Springer, New York. pp. 205–218.Google Scholar

  • Yeo, S.S., Hsuan, Y.G. (2010) Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext. Geomembr. 28:409–421.CrossrefWeb of ScienceGoogle Scholar

  • Yu, Y., Tian, G., Wang, H., Fei, B., Wang, G. (2011) Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung 65:113–119.Web of ScienceGoogle Scholar

  • Zhang, F., Endo, T., Qiu, W., Yang, L., Hirotsu, T. (2002) Preparation and mechanical properties of composite of fibrous cellulose and maleated polyethylene. J. Appl. Polym. Sci. 84: 1971–1980.CrossrefGoogle Scholar

About the article

aChin-Yin Hsu and Teng-Chun Yang: These authors contributed equally to this work.

Received: 2017-10-16

Accepted: 2018-03-05

Published Online: 2018-04-06

Published in Print: 2018-07-26

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The Ministry of Science and Technology of Taiwan (MOST 105-2628-B-005-002-MY3).

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 72, Issue 7, Pages 589–597, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0165.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yu-Shan Jhu, Teng-Chun Yang, Ke-Chang Hung, Jin-Wei Xu, Tung-Lin Wu, and Jyh-Horng Wu
Polymers, 2019, Volume 11, Number 6, Page 1078

Comments (0)

Please log in or register to comment.
Log in