Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 72, Issue 7


The effect of high voltage electrostatic field (HVEF) treatment on bonding interphase characteristics among different wood sections of Masson pine (Pinus massoniana Lamb.)

Qian He
  • The College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tianyi Zhan
  • The College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Haiyang Zhang
  • The College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zehui Ju
  • The College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chunping Dai
  • The College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaoning Lu
  • Corresponding author
  • The College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-28 | DOI: https://doi.org/10.1515/hf-2017-0168


High voltage electrostatic field (HVEF) treatment has been investigated as an optimization method for enhancing the bonding performance of wood via increasing its polarization degree and improvement of the penetration of phenol formaldehyde (PF) adhesive. As the wood surfaces from cross cut (C), radial cut (R) and tangential cut (T) behave differently, five cut combinations formed the samples to be tested, namely C-C, R-R, R-T, T-T (always parallel to grain) and T-T, where the grains were perpendicular to each other. The gluing and HVEF treatments were performed simultaneously. The sample surfaces were characterized by electron spin resonance (ESR) spectroscopy, dynamic contact angle (CAdyn) measurements, X-ray densitometry, fluorescence microscopy, Fourier-transform infrared (FTIR) spectroscopy and measurements of compression shear bonding strength (CSBS). An increased surface energy led to decreased CAdynS in the following order: cross section<tangential section<radial section. Obviously, the triggered free electrons of the HVEF treatments changed the wood surfaces. The penetration depth of PF into wood cell decreased significantly and the maximal density increased after the HVEF treatment. The lower CAdyns also contributed to the better reaction of the wood surface with the PF resin. The CSBS of the five sample combinations was enhanced owing to a better performance of adhesive aggregation, which was increased by 18% (C-C), 24% (T-T), 26% (T-T), 31% (R-T) and 42% (R-R), respectively. Pore size and pore size distribution contributed a lot to the bonding properties of HVEF-treated wood sections.

Keywords: aggregation; anatomical structure; bonding interphase; five sample combinations; high voltage electrostatic field; wood surface


  • Altgen, D., Avramidis, G., Viöl, W., Mai, C. (2016) The effect of air plasma treatment at atmospheric pressure on thermally modified wood surfaces. Wood Sci. Technol. 50:1–15.Google Scholar

  • Arun, N., Sharma, A., Shenoy, V.B., Narayan, K.S. (2006) Electric-field-controlled surface instabilities in soft elastic films. Adv. Mater. 18:660–663.CrossrefGoogle Scholar

  • Atayde, C.M., Gonçalez, J.C., Camargos, J.A. (2011) Colorimetric characteristics of different anatomical sections of muirapiranga (Brosimum sp.) wood. Cerne 17:231–235.Google Scholar

  • Bachtiar, E.V., Clerc, G., Brunner, A.J., Kaliske, M., Niemz, P. (2017) Static and dynamic tensile shear test of glued lap wooden joint with four different types of adhesives. Holzforschung 71:391–396.Google Scholar

  • Bao, F., Zhao, Y., Zhao, Y., Lv, J. (2003) Relationship between permeability and fine structure of common Chinese fir and Masson pine wood. J. B. Forestry Univ. 2:1–5.Google Scholar

  • Chen, M., Zhang, R., Tang, L., Zhou, X., Li, Y., Yang, X. (2016) Development of an industrial applicable dielectric barrier discharge (DBD) plasma treatment for improving bondability of poplar veneer. Holzforschung 70:683–690.Google Scholar

  • Cross, J. Electrostatics: Principles, Problems and Applications. Adam Hilger, London, 1987.Google Scholar

  • Ding, C.J., Liang, Y.Z., Yang, J. (2004) The transport character of water molecule on high voltage electric field in liquid bio-materials. Proceedings of the Fifth International Conference on Applied Electrostatics, Shanghai, P.R. China, 299–306.Google Scholar

  • Dong, Y., Yan, Y., Zhang, Y., Zhang, S., Li, J. (2016) Combined treatment for conversion of fast-growing poplar wood to magnetic wood with high dimensional stability. Wood Sci. Technol. 50:503–517.CrossrefGoogle Scholar

  • Dzubiella, J., Allen, R.J., Hansen, J.P. (2003) Electric field-controlled water permeation coupled to ion transport through a nanopore. J. Chem. Phys. 120:5001–5004.Google Scholar

  • Edalat, H., Faezipour, M., Thole, V., Kamke, F.A. (2014) A new quantitative method for evaluation of adhesive penetration pattern in particulate wood-based composites: elemental counting method. Wood Sci. Technol. 48:703–712.CrossrefGoogle Scholar

  • Fengel, D. (2009) Structure and function of the membrane in softwood bordered pits. Holzforschung 26:221–229.Google Scholar

  • Frihart, C.R. Handbook of Wood Chemistry & Wood Composites. CRC Press, Florida, USA, 2005.Google Scholar

  • Fyie, J.A., Henckel, D.J., Peters, T.E. (1980) Electrostatic orientation for efficiency and engineering composition panel properties [Wood particle boards]. Washington State University International Symposium on Particleboard, Pullman, Washington, USA, 14:261–280.Google Scholar

  • Geffert, A., Výbohová, E., Geffertová, J. (2017) Characterization of the changes of colour and some wood components on the surface of steamed beech wood. Acta Facultatis Xylologiae 59:49–57.Google Scholar

  • Ghazian, O., Adamiak, K., Castle, G.S.P., Higashiyama, Y. (2014) Oscillation, pseudo-rotation and coalescence of sessile droplets in a rotating electric field. Colloids Surf. A 441:346–353.CrossrefGoogle Scholar

  • Harper, D. (2008) Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung 62:91–98.Google Scholar

  • Hass, P., Wittel, F.K., Mendoza, M., Herrmann, H.J., Niemz, P. (2012) Adhesive penetration in beech wood: experiments. Wood Sci. Technol. 46:243–256.CrossrefGoogle Scholar

  • Kang, H.Y., Lee, W.H., Jang, S.S., Kang, C.W. (2017) Polyethylene glycol treatment of Han-ok round wood components to prevent surface checking. BioResources 12:4229–4238.Google Scholar

  • Kemp, B.A., Nikolayev, I., Sheppard, C.J. (2016) Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation. J. Appl. Phys. 119:145105.CrossrefGoogle Scholar

  • Kilic, A., Shim, E., Pourdeyhimi, B. (2015) Measuring electrostatic properties of fibrous materials: a review and a modified surface potential decay technique. J. Electrostatics 74:21–26.CrossrefGoogle Scholar

  • Konnerth, J., Weigl, M., Gindl-Altmutter, W., Avramidis, G., Wolkenhauer, A., Viöl, W., Gilge, M., Obersriebnig, M. (2014) Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by nanoindentation. Holzforschung 68:707–712.Google Scholar

  • Kurowska, A., Kozakiewicz, P., Borysiuk, P. (2010) An attempt at the use of laboratory density analyzer for determination of solid wood cross section density distribution. Forest. Wood Technol. 71:435–439.Google Scholar

  • Lee, N.H., Li, C., Choi, J.H., Hwang, U.D. (2004) Comparison of moisture distribution along radial direction in a log cross section of heartwood and mixed sapwood and heartwood during radio-frequency/vacuum drying. J. Wood Sci. 50:484–489.Google Scholar

  • Lekobou, W.P., Englund, K.R., Laborie, M.-P., Pedrow, P.D. (2016) Influence of atmospheric pressure plasma treatments on the surface properties of ligno-cellulosic substrates. Holzforschung 70:55–61.Google Scholar

  • Li, X., Geng, Y., Simonsen, J., Li, K. (2004) Application of ionic liquids for electrostatic control in wood. Holzforschung 58:280–285.Google Scholar

  • Liu, W., Chen, T., Xie, T., Lai, F., Qiu, R. (2015) Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites. Holzforschung 69:449–455.Google Scholar

  • Maekawa, T., Fujita, M., Saiki, H. (1990) Periodical analysis of wood structure. III. Evaluation of two-dimensional arrangements of softwood tracheids on transverse sections. Bull. Kyoto Univ. Forests 62:275–281.Google Scholar

  • Manfredi, L.B., Osa, O.D.L., Fernández, N.G., Vázquez, A. (1999) Structure–properties relationship for resols with different formaldehyde/phenol molar ratio. Polymer 40:3867–3875.CrossrefGoogle Scholar

  • Marian, J.E., Stumbo, D.A. (1962) Adhesion in Wood) Part. II. Physico-chemical surface phenomena and the thermodynamic approach to adhesion. Holzforschung 16:168–180.CrossrefGoogle Scholar

  • Marian, J.E., Stumbo, D.A., Maxey, C.W. (1958) Surface texture of wood as related to glue joint strength. Forest Prod. J. 8:345–351.Google Scholar

  • Mendoza, M., Hass, P., Wittel, F.K., Niemz, P., Herrmann, H.J. (2010) Adhesive penetration in beech wood Part II: penetration model. Physics 46:1–7.Google Scholar

  • Moghaddam, M.S., Heydari, G., Tuominen, M., Fielden, M., Haapanen, J., Mäkelä, J.M., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016) Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung 70:527–537.Google Scholar

  • Nearn, W.T. (1965) Wood-adhesive interface relations. Fed. Soc. Paint Technol. 37:720–733.Google Scholar

  • Nguyen, T.T., Ji, X., Nguyen, T.H.V., Guo, M. (2017) Wettability modification of heat-treated wood (HTW) via cold atmospheric-pressure nitrogen plasma jet (APPJ). Holzforschung 71:543–560.Google Scholar

  • Qian, J., Zhang, W.B., Jin, Y.M., Li, Y.J., Feng, Z.Q. (1999) The study on the influence of electric field on bonding properties of poplar composites. China Wood Ind. 13:7–9.Google Scholar

  • Qian, J., Jin, Y.M., Yu, Y.M., Yan, J.M., Zhang, H. (2002) Effects of potential difference of setting plate on Sakhu-bonding. J. Nanjing For. Univ. (Nat. Sci. Ed.). 26:41–43.Google Scholar

  • Qian, J., Jin, Y.M., Shen, Z.H., Yu, Y.M., Lou, Y.S. (2005) Effect of intensity and work time of electric field onmoisture gradient of Pinus massoniana wood. J. Zhejiang Forestry College 22:193–197.Google Scholar

  • Richman, D.E. (2015) Conformational responses to changes in the state of ionization of titrable groups in proteins. Holzforschung 54:604–608.Google Scholar

  • Saville, D.A. (2003) ELECTROHYDRODYNAMICS: the Taylor-Melcher Leaky dielectric model. Annu. Rev. Fluid Mech. 29:27–64.Google Scholar

  • Schäffer, E., Thurnalbrecht, T., Russell, T.P., Steiner, U. (2000) Electrically induced structure formation and pattern transfer. Nature 403:874–877.PubMedCrossrefGoogle Scholar

  • Schimleck, L.R., Jones, P.D., Peter, G.F., Daniels, R.F., Clarkiii, A. (2004) Nondestructive estimation of tracheid length from sections of radial wood strips by near infrared spectroscopy. Holzforschung 58:375–381.Google Scholar

  • Sinha, A., Gupta, R., Nairn, J.A. (2011) Thermal degradation of bending properties of structural wood and wood-based composites. Holzforschung 65:221–229.Google Scholar

  • Tang, L., Zhang, R., Wang, X., Yang, X., Zhou, X. (2015) Surface modification of poplar veneer by means of radio frequency oxygen plasma (RF-OP) to improve interfacial adhesion with urea-formaldehyde resin. Holzforschung 69:193–198.Google Scholar

  • Uehara, T., Sakata, I. (1990) Effect of corona discharge treatment on cellulose prepared from beech wood. J. Appl. Polym. Sci. 41:1695–1706.CrossrefGoogle Scholar

  • Xiao, H., He, B., Li, J. (2015) Surface modification of natural fibers by plasma for improving strength properties of paper sheets. Holzforschung 69:1001–1008.Google Scholar

  • Zhan, T., Lv, J., Zhou, X., Lu, X. (2015) Representative volume element (RVE) and the prediction of mechanical properties of diffuse porous hardwood. Wood Sci. Technol. 49:147–157.CrossrefGoogle Scholar

  • Zhan, T., Lv, J., Jiang, J., Peng, H., Li, A., Chang, J. (2016a) Viscoelastic properties of the Chinese fir (Cunninghamia lanceolata) during moisture sorption processes determined by harmonic tests. Materials 9:1020.CrossrefGoogle Scholar

  • Zhan, T., Lv, J., Zhang, H., Jiang, J., Peng, H., Chang, J. (2016b) Changes of time dependent viscoelasticity of Chinese fir wood and its frequency-dependency during moisture desorption processes. Scientia Silvae Sinicae 53:152–162.Google Scholar

  • Zhang, H., Pizzi, A., Zhou, X., Lu, X., Janin, G. (2014) Comparison of linear vibration welded joints in three different directions of wood tauari. Intern. Wood Prod. J. 5:228–232.CrossrefGoogle Scholar

  • Zhao, Y.K., Bao, F.C. (1998) The theoretical analysis on the relationship between longitudinal permeation of fluid in softwood and its anatomic structure. Scientia Silvae Sinicae 20:276–287.Google Scholar

  • Zhu, M., Song, J., Li, T., Gong, A., Wang, Y., Dai, J., Yao, Y., Luo, W., Henderson, D., Hu, L. (2016) Highly anisotropic, highly transparent wood composites. Adv. Mater. 28:5181.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-10-19

Accepted: 2018-01-31

Published Online: 2018-02-28

Published in Print: 2018-07-26

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 72, Issue 7, Pages 557–565, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0168.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Qian He, Tianyi Zhan, Haiyang Zhang, Zehui Ju, Lu Hong, Nicolas Brosse, and Xiaoning Lu
Holzforschung, 2019, Volume 73, Number 10, Page 957
Qian He, Tianyi Zhan, Haiyang Zhang, Zehui Ju, Lu Hong, Nicolas Brosse, and Xiaoning Lu
Industrial Crops and Products, 2019, Volume 137, Page 149
Qian He, Tianyi Zhan, Haiyang Zhang, Zehui Ju, Lu Hong, Nicolas Brosse, Xiaoning Lu, H. Li, M. Ashraf, O. Corbi, P. Yang, L. Wang, and I. Corbi
MATEC Web of Conferences, 2019, Volume 275, Page 01013
Qian He, Tianyi Zhan, Zehui Ju, Haiyang Zhang, Lu Hong, Nicolas Brosse, and Xiaoning Lu
European Journal of Wood and Wood Products, 2018

Comments (0)

Please log in or register to comment.
Log in