Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 72, Issue 8


Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review

Carolina GonçalvesORCID iD: http://orcid.org/0000-0002-9165-6560 / Nádia T. Paiva / João M. Ferra / Jorge Martins
  • LEPABE – Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465, Porto, Portugal
  • DEMad – Departamento da Engenharia de Madeiras, Campus Politécnico de Repeses 3504-510, Viseu, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernão Magalhães
  • LEPABE – Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana Barros-Timmons
  • CICECO – Aveiro Institute of Materials and Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luísa CarvalhoORCID iD: http://orcid.org/0000-0003-4557-7113
  • Corresponding author
  • LEPABE – Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465, Porto, Portugal
  • DEMad – Departamento da Engenharia de Madeiras, Campus Politécnico de Repeses 3504-510, Viseu, Portugal
  • orcid.org/0000-0003-4557-7113
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-30 | DOI: https://doi.org/10.1515/hf-2017-0182


Particleboard (PB), medium density fibreboard (MDF), oriented strand board (OSB) and plywood (PW), the most common products of wood panel industry, are produced by means of synthetic adhesives (resins). From the wide range of adhesives employed, amino resins as combination of formaldehyde (F) and urea (U), and melamine (M) are the most important ones, which include the most popular UF and MUF resins. This review is an introduction to the UF and MUF synthesis processes, and also addresses the key parameters for the performance of these adhesives and gives an overview about the final characteristics of PB and MDF prepared with amino resins. The characterization methods for amino resins and panels are outlined. The strategies for the optimization of resin properties and pressing conditions are discussed in terms of their good performance also under conditions of low formaldehyde emission.

Keywords: hot pressing; medium density fibreboard (MDF); melamine-urea-formaldehyde resin (MUF); optimization of adhesives; particleboard (PB); urea-formaldehyde resin (UF)


  • Angelatos, A.S., Burgar, M.I., Dunlop, N., Separovic, F. (2004) NMR structural elucidation of amino resins. J. Appl. Polym. Sci. 91:3504–3512.CrossrefGoogle Scholar

  • Arshad, M.A., Maaroufi, A., Pinto, G., Elidrissi, A. (2016) Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea – formaldehyde resin. Bull. Mater. Sci. 39:1609–1618.CrossrefGoogle Scholar

  • Athanassiadou, E., Ohlmeyer, M. Chapter 11 – Emissions of Formaldehyde and VOC from Wood-based Panels, Emissions of formaldehyde and VOC from wood-based panels in performance in use and new products of wood based composites. In Formaldehyde and VOC. London, 2009.Google Scholar

  • Barth, H.G., Boyes, B.E., Jackson, C. (1998) Size exclusion chromatography and related separation techniques. Anal. Chem. 70:251–278.CrossrefGoogle Scholar

  • Caballero-Herrera, A., Nordstrand, K., Berndt, K.D., Nilsson, L. (2005) Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization. Biophys. J. 89:842–857.CrossrefPubMedGoogle Scholar

  • Carvalho, L.H. (1999) Estudo da operação de prensagem do aglomerado de fibras de média densidade (MDF) – Prensa descontínua de pratos quentes. Universidade do Porto, Doctoral thesis.Google Scholar

  • Carvalho, L.H., Costa, C. (1998) Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (MDF). Chem. Eng. Commun. 170:1–21.CrossrefGoogle Scholar

  • Carvalho, L.H., Costa, M., Costa, C. (2003) A global model for the hot-pressing of MDF. Wood Sci. Technol. 37:241–258.CrossrefGoogle Scholar

  • Carvalho, L.H., Costa, M., Costa, C. (2006) A very simple empirical kinetic model of the acid-catalyzed cure of urea – formaldehyde resins. J. Appl. Polym. Sci. 102:5977–5987.CrossrefGoogle Scholar

  • Carvalho, L., Martins, J., Costa, C. Chapter 3 – Transport Phenomena, Wood-based Panels – An Introduction for Specialists. Brunel University Press, London, 2010.Google Scholar

  • Chiavarini, M., Bigatto, R., Conti, N. (1977) Synthesis of urea-formaldehyde resins : NMR studies on reaction mechanisms. Die Angew. Makromol. Chemie 70:49–58.Google Scholar

  • Conner, A. (1996) Urea-formaldehyde adhesive resins. Polym. Mater. Encycl., 128:8496–8501.Google Scholar

  • Costa, N. (2013) Adhesive systems for low formaldehyde emission wood-based panels. Universidade do Porto, Doctoral thesis.Google Scholar

  • Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2013a) Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Sci. Technol. 47:1261–1272.CrossrefGoogle Scholar

  • Costa, N., Martins, D., Pereira, J., Martins, J., Ferra, J., Cruz, P., Carvalho, L.H. (2013b) 13 C NMR study of presence of uron structures in amino adhesives and relation with wood-based panels performance. J. Appl. Polym. Sci. 130:4500–4507.Google Scholar

  • Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2013c) Sodium metabisulphite as a scavenger of air pollutants for wood-based building materials. Int. Wood Prod. J. 4:242–247.CrossrefGoogle Scholar

  • Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2014a) Formaldehyde emission in wood based panels: effect of curing reactions. Int. Wood Prod. J. 5:146–150.CrossrefGoogle Scholar

  • Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2014b) Evaluation of bonding performance of amino polymers using ABES. J. Adhes. 90:80–88.CrossrefGoogle Scholar

  • Cyr, P., Riedl, B., Wang, X., Shaler, S. (2006) Urea-melamine-formaldehyde (UMF) resin penetration in medium-density fiberboard (MDF) wood fibers. J. Adhes. Sci. Technol. 20:787–801.CrossrefGoogle Scholar

  • Dai, C.P., Yu, C.M. (2004) Heat and mass transfer in wood composite panels during hot-pressing: Part I. A physical-mathematical model. Wood Fiber Sci. 36:585–597.Google Scholar

  • Dai, C., Frazier, C., Frihart, C., Kamke, F., Thoemen, H., Wang, S. (2003) Fundamentals of composite processing. In: Fundamentals of Composite Processing. Proceedings of a Workshop. Department of Agriculture, Forest Service, p. 126.Google Scholar

  • Dai, C.P., Yu, C.M., Zhou, X. (2005) Heat and mass transfer in wood composite panels during hot pressing: Part II. Modeling void formation and mat permeability. Wood Fiber Sci. 37:242–257.Google Scholar

  • Dai, C.P., Yu, C.M., Xu, C., He, G. (2007) Heat and mass transfer in wood composite panels during hot pressing: Part 4. Experimental investigation and model validation. Holzforschung. 61:83–88.Google Scholar

  • Dean, J.A. Handbook of Chemistry. McGraw-Hill, New York, 1999.Google Scholar

  • Despres, A., Pizzi, A. (2006) Colloidal aggregation of aminoplastic polycondensation resins: urea-formaldehyde versus melamine-formaldehyde and melamine-urea-formaldehyde resins. J. Appl. Polym. Sci. 100:1406–1412.CrossrefGoogle Scholar

  • Dessipri, E., Minopoulou, E., Chryssikos, G.D., Gionis, V., Paipetis, a., Panayiotou, C. (2003) Use of FT-NIR spectroscopy for on-line monitoring of formaldehyde-based resin synthesis. Eur. Polym. J. 39:1533–1540.CrossrefGoogle Scholar

  • Diem, H., Matthias, G. Amino Resins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. pp. 1–28.Google Scholar

  • Dongbin, F., Jianzhang, L., An, M. (2006) Curing characteristics of low molar ratio urea-formaldehyde resins. J. Adhes. Interface 7:45–52.Google Scholar

  • Duan, H., Qiu, T., Guo, L., Ye, J., Li, X. (2015) The microcapsule-type formaldehyde scavenger : the preparation and the application in urea-formaldehyde adhesives. J. Hazard. Mater. 293:46–53.PubMedCrossrefGoogle Scholar

  • Dunky, M. (1998) Urea-formaldehyde (UF) adhesive for wood. Int. J. Adhes. Adhes. 18:95–107.CrossrefGoogle Scholar

  • Dunky, M. (2001) The Chemistry of Adhesives. In COST Action E13 Wood Adhesion and Glued Products.Google Scholar

  • Dunky, M. (2003) Adhesives in the Wood Industry. In COST Action E13 Wood Adhesion and Glued Products.Google Scholar

  • Dunky, M. (2004) Adhesives based on formaldehyde condensation resins. Macromol. Symp. 217:417–429.CrossrefGoogle Scholar

  • Dunky, M., Pizzi, T., Leemput, M. (2002) In COST Action E13 Wood Adhesion and Glued Products.Google Scholar

  • Edoga, M.O. (2006) Comparative study of synthesis procedures for urea – formaldehyde resins (Part I). Leonardo Electron. J. Pract. Technol. 9:63–80.Google Scholar

  • European Panel Federation (2018) Retrieved from europanels.org. (accessed Feb 3, 2018).Google Scholar

  • Ferdosian, F., Pan, Z., Gao, G., Zhao, B. (2017) Bio-based adhesives and evaluation for wood composites application. Polymers. 9:1–29.Google Scholar

  • Ferra, J., Mena, P.C., Martins, J., Mendes, A., Costa, M., Magalhães, F.D., Carvalho, L.H. (2010a) Optimization of the synthesis of urea-formaldehyde resins using response surface methodology. J. Adhes. Sci. Technol. 24:1455–1472.Google Scholar

  • Ferra, J., Mendes, A., Costa, M., Magalhães, F.D., Carvalho, L.H. (2010b) Characterization of urea-formaldehyde resins by GPC/SEC and HPLC techniques: effect of ageing. J. Adhes. Sci. Technol. 24:1535–1551.CrossrefGoogle Scholar

  • Ferra, J., Mendes, A., Costa, M., Carvalho, L., Magalhães, F. (2010c) The colloidal nature of UF resins and its relation with adhesive performance. J. Appl. Polym. Sci. 118:1956–1968.Google Scholar

  • Ferra, J., Henriques, A., Mendes, A., Costa, M.R.N., Carvalho, L.H., Magalhães, F.D. (2011a) Comparison of UF synthesis by alkaline-acid and strongly acid processes. J. Appl. Polym. Sci. 123:1764–1772.Google Scholar

  • Ferra, J., Ohlmeyer, M., Mendes, A., Costa, M., Carvalho, L.H., Magalhães, F.D. (2011b) Evaluation of urea-formaldehyde adhesives performance by recently developed mechanical tests. Int. J. Adhes. Adhes. 31:127–134.CrossrefGoogle Scholar

  • Fink, J.K. (2013) Urea/formaldehyde resins. In: Reactive Polymers Fundamentals and Applications. Eds. Fink, J.K. Elsevier, USA. pp. 283–298.Google Scholar

  • Food and Agriculture Organization of the United Nations (2017) Forestry Production and Trade. Retrieved from http://www.fao.org/faostat/en/#home (accessed Dec 7, 2017).

  • Formacare (2014) Retrieved from www.formacare.org (accessed Sep 10, 2017).

  • Gao, Z., Wang, X.-M., Wan, H., Liu, Z.-M. (2009) DSC characterisation of urea-formaldehyde (UF ) resin curing. Pigment Resin Technol. 38:3–9.CrossrefGoogle Scholar

  • Gavrilovic-Grmusa, I., Dunky, M., Djiporovic-momcilovic, M. (2012) Influence of the viscosity of UF resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints. Holzforschung 66:849–856.Google Scholar

  • Grigsby, W., Thumm, A. (2012) The interactions between wax and UF resin in medium density fibreboard. Eur. J. Wood Wood Prod. 70:507–517.CrossrefGoogle Scholar

  • Guo, C., Zhou, L., Lv, J. (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21:449–456.Google Scholar

  • Han, T.L., Kumar, R.N., Rozman, H.D., Wan Daud, W.R. (2008) Influence of process variables on the reactivity of low formaldehyde emission urea-formaldehyde resin. Polym. Plast. Technol. Eng. 47:551–557.CrossrefGoogle Scholar

  • Harmon, D.M. (2008) CHANGE – Its Challenges and Opportunities. In Engineered Wood Products Association of Australasia Conference.Google Scholar

  • Heinemann, C., Frühwald, A., Humphrey, P.E. (1995) Evaluation of adhesive cure during hot pressing of wood-based composites. In COST Action E13 Wood Adhesion and Glued Products, Austria. pp. 163–170.Google Scholar

  • Henriques, A., Cruz, P., Ferra, J., Martins, J., Magalhães, F.D., Carvalho, L.H. (2011) Determination of formaldehyde/urea molar ratio in amino resins by near-infrared spectroscopy. J. Appl. Polym. Sci. 124:2441–2448.Google Scholar

  • Henriques, A., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2012) Viscosity determination of amino resins during synthesis using near-infrared spectroscopy. Int. Wood Prod. J. 3:64–66.CrossrefGoogle Scholar

  • Hill, C.G., Hedren, A.M., Myers, G.E., Koutsky, J.A. (1984) Raman spectroscopy of urea–formaldehyde resins and model compounds. J. Appl. Polym. Sci. 29:2749–2762.CrossrefGoogle Scholar

  • Hohne, G.W., Hemminger, W.F., Flammersheim, H.J. Differential Scanning Calorimetry. 2nd ed. Springer Berlin Heidelberg, 2003. p. 291.Google Scholar

  • Hong, W., Meng, M., Gao, D., Liu, Q., Kang, C., Huang, S., Huang, S. (2016) Thermal analysis study of modified urea-formaldehyde resin. Polym. Korea 40:707–713.CrossrefGoogle Scholar

  • Humphrey, P., Bolton, P., Kavvouras, P. (1989) The hot pressing of dry-formed wood-based composites. Part III. Predicted vapour pressure and temperature variation with time, compared with experimental data for laboratory boards. Holzforschung 43:265–274.CrossrefGoogle Scholar

  • ICIS (2010) Formaldehyde Uses and Market Data.

  • IHS Markit. Amino Resins – Chemical Economics Handbook. 2018. Retrieved from ihsmarkit.com.

  • Irle, M., Friedrich, T., Labiste, M., Richard, T. (2017) Formaldehyde in wood: where does it come from International Conference “Wood Science and Engineering in the Third Millenium” (ICWSE).Google Scholar

  • Jeong, B., Park, B. (2017) Effect of analytical parameters of gel permeation chromatography on molecular weight measurements of urea-formaldehyde resins. J. Korean Wood Sci. Technol. 45:471–483.Google Scholar

  • Jost, M., Sernek, M. (2009) Shear strength development of the phenol–formaldehyde adhesive bond during cure. Wood Sci. Technol. 43:153–166.CrossrefGoogle Scholar

  • Kelley, M. (1977) Critical literature review of relationship between processing parameters and physical properties of particleboard. General Technical Report FPL-10. Forest Products Laboratory, Forest Service, U.S. Department of Agriculture.Google Scholar

  • Kibrik, É., Steinhof, O., Scherr, G., Thiel, W.R., Hasse, H. (2014) On-line NMR spectroscopic reaction kinetic study of urea-formaldehyde resin synthesis. Ind. Eng. Chem. Res. 53:12602–12613.CrossrefGoogle Scholar

  • Kim, M.G. (1999) Examination of selected synthesis parameters for typical wood adhesive-type urea – formaldehyde resins by 13 C-NMR spectroscopy. II. J. Appl. Polym. Sci. 75:1243–1254.Google Scholar

  • Kim, M.G., Wan, H., No, B.Y., Nieh, W.L. (2001) Examination of selected synthesis and room-temperature storage parameters for wood adhesive-type urea-formaldehyde resins by 13C-NMR spectroscopy. IV. J. Appl. Polym. Sci. 82:1155–1169.CrossrefGoogle Scholar

  • Konnerth, J., Moser, J., Gindl, W. (2010) Tensile shear strength of UF- and MUF-bonded veneer related to data of adhesives and cell walls measured by nanoindentation. Holz Als Roh-Und Werkst. 64:337–342.Google Scholar

  • Konnerth, J., Weigl, M., Gindl-altmutter, W., Avramidis, G., Viöl, W., Gilge, M., Obersriebnig, M. (2014) Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by nanoindentation. Holzforschung 68:707–712.Google Scholar

  • Kumar, R., Han, T., Rozman, H.D., Daud, W., Ibrahim, M. (2007) Studies in the process optimization and characterization of low formaldehyde emission urea-formaldehyde resin by response surface methodology. J. Appl. Polym. Sci. 103:2709–2719.CrossrefGoogle Scholar

  • Kumlin, K., Simonson, R. (1978) Urea-formaldehyde resins. 1. Separation of low molecular weight components in urea-formaldehyde resins by means of liquid chromatography. Die Angew. Makromol. Chemie 68:175–184.CrossrefGoogle Scholar

  • Lecourt, M., Pizzi, A., Humphrey, P. (2003) Comparison of TMA and ABES as forecasting systems of wood bonding effectiveness. Holz Als Roh – Und Werkst. 61:75–76.CrossrefGoogle Scholar

  • Lee, S., Shupe, T.F., Groom, L.H., Hse, C.Y. (2007) Wetting behaviors of phenol- and urea-formaldehyde. Wood Fiber Sci. 39:482–492.Google Scholar

  • Lei, H., Frazier, C. (2015) Curing behaviour of melamine-urea-formaldehyde (MUF) resins adhesive. Int. J. Adhes. Adhes. 62:40–44.CrossrefGoogle Scholar

  • Leidl, M., Huber, W.F., Schwarzinger, C., Endesfelder, A. (2007) Characterization of a linear melamine formaldehyde resin. Int. J. Polym. Anal. Charact. 12:301–314.CrossrefGoogle Scholar

  • Li, T., Guo, X., Liang, J., Wang, H., Xie, X., Du, G. (2015) Competitive formation of the methylene and methylene ether bridges in the urea – formaldehyde reaction in alkaline solution : a combined experimental and theoretical study. Wood Sci. Technol. 49:475–493.CrossrefGoogle Scholar

  • Li, T., Liang, J., Cao, M., Guo, X., Xie, X., Du, G. (2016) Re-elucidation of the acid-catalyzed urea – formaldehyde reactions : a theoretical and 13 C-NMR study. J. Appl. Polym. Sci. 44339:1–18.Google Scholar

  • Liu, C., Luo, J., Li, X., Gao, Q., Li, J. (2016) Effects of compounded curing agents on properties and performance of urea formaldehyde resin. J. Polym. Environ. 26:158–165.Google Scholar

  • Loxton, C., Thumm, A., Grigsby, W.J., Adams, T.A., Ede, R.M. (2003) Resin distribution in medium density fiberboard. Quantification of UF resin distribution on blowline- and dry-blended MDF fiber and panels. Wood Fiber Sci. 35:370–380.Google Scholar

  • Lu, X., Pizzi, A. (1998a) Curing conditions effects on the characteristics of thermosetting adhesives-bonded wood joints – Part 1: Substrate influence on TTT and CHT curing diagrams of wood adhesives. Holz Als Roh-Und Werkst. 56:339–346.CrossrefGoogle Scholar

  • Lu, X., Pizzi, A. (1998b) Curing conditions effects on the characteristics of thermosetting adhesives-bonded wood joints – Part 2: Hot postcuring improvement of UF particleboards and its temperature forecasting model. Holz Als Roh-Und Werkst. 56:339–346.CrossrefGoogle Scholar

  • Ludlam, P.R., King, J.G., Anderson, R.M. (1986) Liquid chromatographic procedure for the separation and characterisation of simple urea-formaldehyde reaction products. Analyst 111:1265–1271.CrossrefGoogle Scholar

  • Magnusson, A. (2015) Syntehsis of New MUF Resins and Analysis of the Curing in the Glue Joint. Degree Project. KTH Royal Institute of Technology.Google Scholar

  • Maku, T., Hamada, R., Sasaki, H. (1959) Studies on the particleboard. Report 4: Temperature and moisture distribution in particleboard during hot-pressing.Google Scholar

  • Maloney, T. Modern Particleboard & Dry-Process Fiberboard Manufacturing. Miller Freeman Publications, San Francisco California, 1989.Google Scholar

  • Mantanis, G., Athanassiadou, E., Barbu, M., Wijnendaele, K. (2017) Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Mater. Sci. Eng. 13:104–116.Google Scholar

  • Market Research Future (2017) Amino Resins Market Research Report – Forecast to 2023. Retrieved from www.marketresearchfuture.com/reports/amino-resins-market-1146 (accessed Feb 25, 2017).

  • Martins, J., Vasconcelos, E., Pereira, J., Ferra, J., Cruz, P., Magalhães, F.D., Carvalho, L.H. (2012) A new methodology to predict the optimum pressing time for wood-based panels produced with low formaldehyde emission resins. In 66th International Convention. Washington DC.Google Scholar

  • Martins, J., Pereira, J., Coelho, C., Ferra, J., Mena, P., Magalhães, F.D., Carvalho, L.H. (2013) Adhesive bond strength development evaluation using ABES in different lignocellulosic materials. Int. J. Adhes. Adhes. 47:105–109.CrossrefGoogle Scholar

  • Meder, R., Ebdon, N., Warburton, P., Stahl, W., Woolley, S., Earnshae, S. (2011) NIR Assessment of MUF Resin Quality for Composite Panel Production. Final report. Forest and Wood Products Australia.Google Scholar

  • Metrohm NIR Spectroscopy – A guide to near-infrared spectroscopic analysis of industrial manufacturing processes, 2013.

  • Meyer, B. C-13 NMR Identification of Urea-formaldehyde resins. In ACS National Meeting. 1981.Google Scholar

  • Minopoulou, E., Dessipri, E., Chryssikos, G.D., Gionis, V., Paipetis, A., Panayiotou, C. (2003) Use of NIR for structural characterization of urea-formaldehyde resins. Int. J. Adhes. Adhes. 23:473–484.CrossrefGoogle Scholar

  • Muller, U., Pretschuh, C., Mitter, R., Knappe, S. (2017) Dielectric analysis as a cure monitoring system for UF particle boards. Int. J. Adhes. Adhes. 73:45–50.CrossrefGoogle Scholar

  • Myers, G. (1984) How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. For. Prod. J. 34:34–41.Google Scholar

  • Nemade, K.R., Waghuley, S.A. (2014) Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J. Phys. 88:577–583.CrossrefGoogle Scholar

  • No, B.Y., Kim, M.G. (2004) Syntheses and properties of low-level melamine-modified urea-melamine-formaldehyde resins. J. Appl. Polym. Sci. 93:2559–2569.CrossrefGoogle Scholar

  • Nuryawan, A., Park, B. (2017) Quantification of hydrolytic degradation of cured urea-formaldehyde resin adhesives using confocal laser scanning microscopy. Int. J. Adhes. Adhes. 74:1–5.CrossrefGoogle Scholar

  • Nuryawan, A., Singh, A.P., Park, B., Causin, V. (2014) Micro-morphological features of cured urea-formaldehyde adhesives detected by transmission electron microscopy micro-morphological features of cured urea-formaldehyde adhesives detected by transmission electron microscopy. J. Adhes. 92:121–134.Google Scholar

  • Nuryawan, A., Singh, A.P., Zanetti, M., Park, B., Causin, V. (2017) Insights into the development of crystallinity in liquid urea-formaldehyde resins. Int. J. Adhes. Adhes. 72:62–69.CrossrefGoogle Scholar

  • Obersriebnig, M., Veigel, S., Konnerth, J. (2012) Determination of adhesive energy at the wood cell-wall/UF interface by nanoindentation (NI). Holzforschung 66:781–787.Google Scholar

  • Paiva, N., Henriques, A., Cruz, P., Ferra, J., Carvalho, L.H., Magalhães, F.D. (2012a) Production of melamine fortified urea-formaldehyde resins with low formaldehyde emission. J. Appl. Polym. Sci. 124:2311–2317.CrossrefGoogle Scholar

  • Paiva, N., Pereira, J., Ferra, J., Cruz, P., Carvalho, L.H., Magalhães, F.D. (2012b) Study of influence of synthesis conditions on properties of melamine-urea formaldehyde resins. Int. Wood Prod. J. 3:51–57.CrossrefGoogle Scholar

  • Pakdel, H., Cyr, P.L., Riedl, B., Deng, J. (2008) Quantification of urea formaldehyde resin in wood fibers using X-ray photoelectron spectroscopy and confocal laser scanning microscopy. Wood Sci. Technol. 42:133–148.CrossrefGoogle Scholar

  • Papadopoulou, E., Kountouras, S., Nikolaidou, Z., Michailof, C., Kalogiannis, K.A., Lappas, A. (2016) Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catlytic pyrolysis of European Wood. Holzforschung 70:1139–1145.Google Scholar

  • Park, B., Causin, V. (2013) Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Eur. Polym. J. 49:532–537.CrossrefGoogle Scholar

  • Park, B., Jeong, H. (2011) Hydrolytic stability and crystallinity of cured urea – formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Int. J. Adhes. Adhes. 31:524–529.CrossrefGoogle Scholar

  • Park, B., Kim, J. (2008) Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios. J. Appl. Polym. Sci. 108:2045–2051.CrossrefGoogle Scholar

  • Park, B., Kim, Y., Singh, A., Lim, K. (2002) Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13 C CP/MAS NMR spectroscopy. J. Appl. Polym. Sci. 88:2677–2687.Google Scholar

  • Park, B., Jeong, H., Lee, S. (2011) Morphology and chemical elements detection of cured urea – formaldehyde resins. J. Appl. Polym. Sci. 120:1475–1482.CrossrefGoogle Scholar

  • Park, B., Frihart, C., Yu, Y., Singh, A. (2013) Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method. Eur. Polym. J. 49:3089–3094.CrossrefGoogle Scholar

  • Pereira, C., Blanchard, C., Carvalho, L.H., Costa, C. (2004) High frequency heating of medium density fiberboard (MDF): theory and experiment. Chem. Eng. Sci. 59:735–745.CrossrefGoogle Scholar

  • Pereira, C., Carvalho, L.H., Costa, C. (2006) Modeling the continuous hot-pressing of MDF. Wood Sci. Technol. 40:308–326.CrossrefGoogle Scholar

  • Pizzi, A. (1983) Amino resin wood adhesives. In Wood Adhesives Chemistry and Technology, Vol. 1.

  • Pizzi, A. (2003) Urea–formaldehyde adhesives. In Handbook of Adhesive Technology. Eds. Pizzi, A., Mittal, K.L. Taylor & Francis, UK.Google Scholar

  • Pizzi, A., Ibeh, C. Aminos. In: Handbook of Thermoset Plastics. 3rd ed. William Andrew – Applied Science Publisher, EUA, 2014.Google Scholar

  • Pizzi, A., Mercer, A. (1994) Considerations on the principles of preparation of melamine-urea-formaldehyde adhesive resins for particleboard. Holzforsch. Holzverw. 46:51–54.Google Scholar

  • Pizzi, A., Mittal, K.L. Handbook of Adhesive Technology. 2nd ed. (Taylor & Francis, Ed.). Marcel Dekker Inc, UK, 2003.Google Scholar

  • Pretschuh, C., Müller, U., Wuzella, G., Dorner, F., Eckmann, R. (2012) Dielectric analysis as curing control for aminoplast resins – correlation with DMA. Eur. J. Wood Wood Prod. 70:749–753.CrossrefGoogle Scholar

  • Qin, L., Lin, L., Fu, F. (2016) Microstructural and micromechanical characterization of modified urea-formaldehyde resin penetration into wood. Bioresources 11:182–194.Google Scholar

  • Rachtanapun, P., Heiden, P. (2002) Thermoplastic polymers as modifiers for urea- formaldehyde (UF) wood adhesives. II. Procedures for the preparation and characterization of thermoplastic-modified UF wood composites. J. Appl. Polym. Sci. 87:898–907.Google Scholar

  • Rammon, R.M. The Influence of Synthesis Parameters on the Structure of Urea-formaldehyde Resins. Washington State University, 1984.Google Scholar

  • Rammon, R.M. (1986) The chemical structure of UF Resins. J. Adhes. 19:115–135.CrossrefGoogle Scholar

  • Ribeiro, H.A., Carvalho, L. H., Martins, J., Costa, C. (2011) Transport phenomena in paper and wood-based panels production. Mass Transf. Multiph. Syst. Its Appl. 15:313–342.Google Scholar

  • Roffael, E., Behn, C., Dix, B. (2012) On the formaldehyde release of wood particles. Eur. J. Wood Wood Prod. 70:911–912.CrossrefGoogle Scholar

  • Salem, M., Bohm, M. (2013) Understanding of formaldehyde emissions from solid wood: an overview. Bioresources 8:4775–4790.Google Scholar

  • Salthammer, T., Mentese, S. (2008) Comparison of analytical techniques for the determination of aldehydes in test chambers. Chemosphere 73:1351–1356.CrossrefPubMedGoogle Scholar

  • Salthammer, T., Mentese, S., Marutzky, R. (2010) Formaldehyde in the indoor environment. Chem. Rev. 110:2536–2572.CrossrefPubMedGoogle Scholar

  • Schrod, M., Rode, K., Braun, D., Pasch, H. (2003) Matrix-assisted laser desorption/ionization mass spectrometry of synthetic polymers. VI. Analysis of phenol–urea–formaldehyde cocondensates. J. Appl. Polym. Sci. 90:2540–2548.CrossrefGoogle Scholar

  • Shao-sen, L.I.N., Jun, Y.A.N., Hong-guang, L.I., Shi-guo, D.U. (2016) Inhibitor performance and the preparation study of urea formaldehyde resin matrix composite particle. In 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016). pp. 312–316.Google Scholar

  • Siimer, K., Kaljuvee, T., Christjanson, P., Lasn, I. (2006) Curing of urea-formaldehyde resins on a wood substrate. J. Therm. Anal. Calorim. 84:71–77.CrossrefGoogle Scholar

  • Siimer, K., Christjanson, P., Kaljuvee, T., Pehk, T., Lasn, I., Saks, I. (2008) TG-DTA study of melamine-urea-formaldehyde resins. J. Therm. Anal. Calorim. 92:19–27.CrossrefGoogle Scholar

  • Singh, A.P., Causin, V., Nuryawan, A., Park, B. (2014) Morphological, chemical and crystalline features of urea-formaldehyde resin cured in contact with wood. Eur. Polym. J. 56:185–193.CrossrefGoogle Scholar

  • Singh, A.P., Nuryawan, A., Park, B., Lee, K.H. (2015) Urea-formaldehyde resin penetration into Pinus radiata tracheid walls assessed by TEM-EDXS. Holzforschung 69:303–306.Google Scholar

  • Soulard, C., Kamoun, C., Pizzi, A. (1998) Uron and uron-urea-formaldehyde interior wood adhesives. Holzforsch. Holzverw. 50:89–94.Google Scholar

  • Stefke, B., Dunky, M. (2006) Catalytic influence of wood on the hardening behavior of formaldehyde-based resin adhesives used for wood-based panels. J. Adhes. Sci. Technol. 20:761–785.CrossrefGoogle Scholar

  • Steinhof, O., Scherr, G., Hasse, H. (2015) Investigation of the reaction of 1,3-dimethylurea with formaldehyde by quantitative on-line NMR spectroscopy: a model for the urea-formaldehyde system. Magn. Reson. Chem. 54:457–476.PubMedGoogle Scholar

  • Stockel, F., Konnerth, J., Kantner, W., Moser, J., Gindl, W. (2009) Mechanical characterisation of adhesives in particle boards by means of nanoindentation. Eur. J. Wood Wood Prod. 68:421–426.Google Scholar

  • Strickler, M. (1959) Effects of press cycle and moisture content on properties of Douglas-fir flakeboard. For. Prod. J. 9:203–215.Google Scholar

  • Sun, Q.N., Hse, C.Y., Shupe, T.F. (2014) Effect of different catalysts on urea-formaldehyde resin synthesis. J. Appl. Polym. Sci. 131:1–7.Google Scholar

  • Thoemen, H., Humphrey, P. (2001) Hot pressing of wood-based composites: selected aspects of the physics investigated by means of simulation. In 5th European Products Symposium.

  • Thoemen, H., Humphrey, P. (2006) Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer. Holz Als Roh – Und Werkst. 64:1–10.CrossrefGoogle Scholar

  • Thoemen, H., Heinemann, C., Hanvongjirawat, W. (2004) The virtual hot press: a simulation platform for process optimization and training. In: Proceedings of 4th European Wood-Based Panels Symposium, Hanover. WKI, Braunschweig, Germany. pp. 13.Google Scholar

  • Thoemen, H., Irle, M., Sernek, M. Wood-Based Panels – An Introduction for Specialists. Brunel University Press, London, 2010.Google Scholar

  • Tohmura, S., Hse, C.-Y., Higuchi, M. (2000) Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins. J. Adhes. Sci. 46:303–309.Google Scholar

  • Tomita, B., Hirose, Y. (1976) Urea-formaldehyde resins: NMR study on base-catalyzed reaction of formaldehyde with urea in deuterium oxide. J. Poly. Sci. 14:387–401.Google Scholar

  • Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition, 1990.

  • Vassilikou-dova, A., Kalogeras, I.M. (2009) Chapter 6 – Dielectric Analysis (DEA). In: Thermal Analysis of Polymers: Fundametals and Applications. Eds. Joseph D. Menczel and R. Bruce Prime. John Wiley & Sons, Inc., EUA. pp. 497–613.Google Scholar

  • Vnucec, D., Kutnar, A., Gorsek, A. (2017) Soy-based adhesives for wood-bonding – a review. J. Adhes. Sci. and Technol. 31:910–931.CrossrefGoogle Scholar

  • Wang, S., Winistorfer, P. (2001) Monitoring resin cure during particleboard manufacture using a dielectric system. Wood Fiber Sci. 35:532–539.Google Scholar

  • Weigl, M., Wimmer, R., Sykacek, E., Steinwender, M. (2009) Wood-borne formaldehyde varying with species, wood grade, and cambial age. Forest Products J. 59:88–92.Google Scholar

  • Williams, W. (1983) US Patent 4410685 – Hydrolytically stable urea-formaldehyde resins and process for manufacturing them.

  • Wood Based Panels International – wbpi (2017) Volume 37.

  • Wood Panel Industries Federation National Panel Products Division, TRADA Technology Limited, Building Research Establishment Limited (2009) Panel guide. Retrieved from http://www.wpif.org.uk/PanelGuide.asp.

  • Wu, Z., Lei, H., Du, G., Cao, M., Xi, X., Liang, J. (2016) Urea – formaldehyde resin prepared with concentrated formaldehyde. J. Adhes. Sci. Technol. 30:2655–2666.CrossrefGoogle Scholar

  • Xing, C., Riedl, B., Cloutier, A., Shaler, S.M. (2005) Characterization of urea–formaldehyde resin penetration into medium density fiberboard fibers. Wood Sci. Technol. 39:374–384.CrossrefGoogle Scholar

  • Youngquist, J. (1999) Chapter 10 – Wood-based Composites and Panel Products. Wood as an engineering material. Forest Products Laboratory. pp. 463.

  • Zanetti, M., Pizzi, A. (2003) Low addition of melamine salts for improved melamine-urea-formaldehyde adhesive water resistance. J. Appl. Polym. Sci. 88:287–292.CrossrefGoogle Scholar

  • Zanetti, M., Pizzi, A., Beaujean, M., Pasch, H., Rode, K., Dalet, P. (2002) Acetals-induced strength increase of melamine-urea-formaldehyde (MUF) polycondensation adhesives. II. Solubility and colloidal state disruption. J. Appl. Polym. Sci. 86:1855–1862.CrossrefGoogle Scholar

  • Zanetti, M., Pizzi, A., Faucher, P. (2004) Low-volatility acetals to upgrade the performance of melamine-urea-formaldehyae wood adhesive resins. J. Appl. Polym. Sci. 92:672–675.CrossrefGoogle Scholar

  • Zanetti, M., Causin, V., Saini, R., Cardin A., Cavalli R. (2014) Effect of tannin on increasing UF adhesive performance at high temperature investigated by TMA and TGA analysis. Eur. J. Wood Wood Prod. 72:385–392.CrossrefGoogle Scholar

  • Zhang, Y., Yang, C., Zheng, J., Lu, M. (2015) Crystallization behavior of stable urea formaldehyde resin dispersed by polyvinyl alcohol. Iran Polym. J. 24:13–20.CrossrefGoogle Scholar

  • Zhu, X., Xu, E., Lin, R., Wang, X., Gao, Z. (2014) Decreasing the formaldehyde emission in urea-formaldehyde using modified starch by strongly acid process. J. Appl. Polym. Sci. 40202:2–7.Google Scholar

  • Zohuriaan-mehr, N.E. M.J., Kabiri, S.M.K., Bouhendi, H. (2017) Hydroxymethyl furfural-modified urea – formaldehyde resin : synthesis and properties. Eur. J. Wood Wood Prod. 75:71–80.CrossrefGoogle Scholar

  • Zombori, B. (2001) Modeling the Transient effects during the hot-pressing of wood-based composites Chapter 2. Simulation of the mat formation process. In: Modeling the Transient Effects during the Hot-Pressing of Wood-Based Composites. pp. 8–40, Doctoral Thesis.Google Scholar

  • Zombori, B., Kamke, F., Watson, L. (2003) Simulation of the internal conditions during the hot-pressing process. Wood Fiber Sci. 35:2–23.Google Scholar

  • Zorba, T., Papadopoulou, E., Hatjiissaak, A., Paraskevopoulos, K.M., Chrissafis, K. (2008) Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J. Therm. Anal. Calorim. 92:29–33.CrossrefGoogle Scholar

About the article

Received: 2017-11-08

Accepted: 2018-03-19

Published Online: 2018-04-30

Published in Print: 2018-07-26

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: PhD grant PD/BDE/174352/2016; Project POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT – Fundação para a Ciência e a Tecnologia; the project NORTE-01-0145- FEDER-000005 – LEPABE-2-ECO INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement and 2GAR project under PT2020 (3489).

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 72, Issue 8, Pages 653–671, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0182.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in