Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 30, 2018

Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review

  • Carolina Gonçalves ORCID logo , Nádia T. Paiva , João M. Ferra , Jorge Martins , Fernão Magalhães , Ana Barros-Timmons and Luísa Carvalho ORCID logo EMAIL logo
From the journal Holzforschung

Abstract

Particleboard (PB), medium density fibreboard (MDF), oriented strand board (OSB) and plywood (PW), the most common products of wood panel industry, are produced by means of synthetic adhesives (resins). From the wide range of adhesives employed, amino resins as combination of formaldehyde (F) and urea (U), and melamine (M) are the most important ones, which include the most popular UF and MUF resins. This review is an introduction to the UF and MUF synthesis processes, and also addresses the key parameters for the performance of these adhesives and gives an overview about the final characteristics of PB and MDF prepared with amino resins. The characterization methods for amino resins and panels are outlined. The strategies for the optimization of resin properties and pressing conditions are discussed in terms of their good performance also under conditions of low formaldehyde emission.

Acknowledgments

The author thanks ENGIQ – Doctoral Programme in Refining, Petrochemical and Chemical Engineering (PDERPQ); FCT and EuroResinas – Indústrias Químicas for the PhD grant PD/BDE/174352/2016.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: PhD grant PD/BDE/174352/2016; Project POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT – Fundação para a Ciência e a Tecnologia; the project NORTE-01-0145- FEDER-000005 – LEPABE-2-ECO INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement and 2GAR project under PT2020 (3489).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Angelatos, A.S., Burgar, M.I., Dunlop, N., Separovic, F. (2004) NMR structural elucidation of amino resins. J. Appl. Polym. Sci. 91:3504–3512.10.1002/app.13538Search in Google Scholar

Arshad, M.A., Maaroufi, A., Pinto, G., Elidrissi, A. (2016) Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea – formaldehyde resin. Bull. Mater. Sci. 39:1609–1618.10.1007/s12034-016-1304-xSearch in Google Scholar

Athanassiadou, E., Ohlmeyer, M. Chapter 11 – Emissions of Formaldehyde and VOC from Wood-based Panels, Emissions of formaldehyde and VOC from wood-based panels in performance in use and new products of wood based composites. In Formaldehyde and VOC. London, 2009.Search in Google Scholar

Barth, H.G., Boyes, B.E., Jackson, C. (1998) Size exclusion chromatography and related separation techniques. Anal. Chem. 70:251–278.10.1021/a1980015tSearch in Google Scholar

Caballero-Herrera, A., Nordstrand, K., Berndt, K.D., Nilsson, L. (2005) Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization. Biophys. J. 89:842–857.10.1529/biophysj.105.061978Search in Google Scholar PubMed PubMed Central

Carvalho, L.H. (1999) Estudo da operação de prensagem do aglomerado de fibras de média densidade (MDF) – Prensa descontínua de pratos quentes. Universidade do Porto, Doctoral thesis.Search in Google Scholar

Carvalho, L.H., Costa, C. (1998) Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (MDF). Chem. Eng. Commun. 170:1–21.10.1080/00986449808912732Search in Google Scholar

Carvalho, L.H., Costa, M., Costa, C. (2003) A global model for the hot-pressing of MDF. Wood Sci. Technol. 37:241–258.10.1007/s00226-003-0170-zSearch in Google Scholar

Carvalho, L.H., Costa, M., Costa, C. (2006) A very simple empirical kinetic model of the acid-catalyzed cure of urea – formaldehyde resins. J. Appl. Polym. Sci. 102:5977–5987.10.1002/app.25174Search in Google Scholar

Carvalho, L., Martins, J., Costa, C. Chapter 3 – Transport Phenomena, Wood-based Panels – An Introduction for Specialists. Brunel University Press, London, 2010.Search in Google Scholar

Chiavarini, M., Bigatto, R., Conti, N. (1977) Synthesis of urea-formaldehyde resins : NMR studies on reaction mechanisms. Die Angew. Makromol. Chemie 70:49–58.10.1002/apmc.1978.050700105Search in Google Scholar

Conner, A. (1996) Urea-formaldehyde adhesive resins. Polym. Mater. Encycl., 128:8496–8501.Search in Google Scholar

Costa, N. (2013) Adhesive systems for low formaldehyde emission wood-based panels. Universidade do Porto, Doctoral thesis.10.1179/2042644514Z.000000000108Search in Google Scholar

Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2013a) Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Sci. Technol. 47:1261–1272.10.1007/s00226-013-0573-4Search in Google Scholar

Costa, N., Martins, D., Pereira, J., Martins, J., Ferra, J., Cruz, P., Carvalho, L.H. (2013b) 13 C NMR study of presence of uron structures in amino adhesives and relation with wood-based panels performance. J. Appl. Polym. Sci. 130:4500–4507.10.1002/app.39688Search in Google Scholar

Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2013c) Sodium metabisulphite as a scavenger of air pollutants for wood-based building materials. Int. Wood Prod. J. 4:242–247.10.1179/2042645313Y.0000000037Search in Google Scholar

Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2014a) Formaldehyde emission in wood based panels: effect of curing reactions. Int. Wood Prod. J. 5:146–150.10.1179/2042645314Y.0000000070Search in Google Scholar

Costa, N., Pereira, J., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2014b) Evaluation of bonding performance of amino polymers using ABES. J. Adhes. 90:80–88.10.1080/00218464.2013.784693Search in Google Scholar

Cyr, P., Riedl, B., Wang, X., Shaler, S. (2006) Urea-melamine-formaldehyde (UMF) resin penetration in medium-density fiberboard (MDF) wood fibers. J. Adhes. Sci. Technol. 20:787–801.10.1163/156856106777638716Search in Google Scholar

Dai, C.P., Yu, C.M. (2004) Heat and mass transfer in wood composite panels during hot-pressing: Part I. A physical-mathematical model. Wood Fiber Sci. 36:585–597.Search in Google Scholar

Dai, C., Frazier, C., Frihart, C., Kamke, F., Thoemen, H., Wang, S. (2003) Fundamentals of composite processing. In: Fundamentals of Composite Processing. Proceedings of a Workshop. Department of Agriculture, Forest Service, p. 126.Search in Google Scholar

Dai, C.P., Yu, C.M., Zhou, X. (2005) Heat and mass transfer in wood composite panels during hot pressing: Part II. Modeling void formation and mat permeability. Wood Fiber Sci. 37:242–257.Search in Google Scholar

Dai, C.P., Yu, C.M., Xu, C., He, G. (2007) Heat and mass transfer in wood composite panels during hot pressing: Part 4. Experimental investigation and model validation. Holzforschung. 61:83–88.10.1515/HF.2007.013Search in Google Scholar

Dean, J.A. Handbook of Chemistry. McGraw-Hill, New York, 1999.Search in Google Scholar

Despres, A., Pizzi, A. (2006) Colloidal aggregation of aminoplastic polycondensation resins: urea-formaldehyde versus melamine-formaldehyde and melamine-urea-formaldehyde resins. J. Appl. Polym. Sci. 100:1406–1412.10.1002/app.23230Search in Google Scholar

Dessipri, E., Minopoulou, E., Chryssikos, G.D., Gionis, V., Paipetis, a., Panayiotou, C. (2003) Use of FT-NIR spectroscopy for on-line monitoring of formaldehyde-based resin synthesis. Eur. Polym. J. 39:1533–1540.10.1016/S0014-3057(03)00073-9Search in Google Scholar

Diem, H., Matthias, G. Amino Resins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. pp. 1–28.Search in Google Scholar

Dongbin, F., Jianzhang, L., An, M. (2006) Curing characteristics of low molar ratio urea-formaldehyde resins. J. Adhes. Interface 7:45–52.Search in Google Scholar

Duan, H., Qiu, T., Guo, L., Ye, J., Li, X. (2015) The microcapsule-type formaldehyde scavenger : the preparation and the application in urea-formaldehyde adhesives. J. Hazard. Mater. 293:46–53.10.1016/j.jhazmat.2015.03.037Search in Google Scholar PubMed

Dunky, M. (1998) Urea-formaldehyde (UF) adhesive for wood. Int. J. Adhes. Adhes. 18:95–107.10.1016/S0143-7496(97)00054-7Search in Google Scholar

Dunky, M. (2001) The Chemistry of Adhesives. In COST Action E13 Wood Adhesion and Glued Products.10.1016/B978-044451140-9/50023-8Search in Google Scholar

Dunky, M. (2003) Adhesives in the Wood Industry. In COST Action E13 Wood Adhesion and Glued Products.10.1201/9780203912225.ch47Search in Google Scholar

Dunky, M. (2004) Adhesives based on formaldehyde condensation resins. Macromol. Symp. 217:417–429.10.1002/masy.200451338Search in Google Scholar

Dunky, M., Pizzi, T., Leemput, M. (2002) In COST Action E13 Wood Adhesion and Glued Products.10.1016/B978-044451140-9/50023-8Search in Google Scholar

Edoga, M.O. (2006) Comparative study of synthesis procedures for urea – formaldehyde resins (Part I). Leonardo Electron. J. Pract. Technol. 9:63–80.Search in Google Scholar

European Panel Federation (2018) Retrieved from europanels.org. (accessed Feb 3, 2018).Search in Google Scholar

Ferdosian, F., Pan, Z., Gao, G., Zhao, B. (2017) Bio-based adhesives and evaluation for wood composites application. Polymers. 9:1–29.10.3390/polym9020070Search in Google Scholar PubMed PubMed Central

Ferra, J., Mena, P.C., Martins, J., Mendes, A., Costa, M., Magalhães, F.D., Carvalho, L.H. (2010a) Optimization of the synthesis of urea-formaldehyde resins using response surface methodology. J. Adhes. Sci. Technol. 24:1455–1472.10.1201/b12180-13Search in Google Scholar

Ferra, J., Mendes, A., Costa, M., Magalhães, F.D., Carvalho, L.H. (2010b) Characterization of urea-formaldehyde resins by GPC/SEC and HPLC techniques: effect of ageing. J. Adhes. Sci. Technol. 24:1535–1551.10.1163/016942410X501070Search in Google Scholar

Ferra, J., Mendes, A., Costa, M., Carvalho, L., Magalhães, F. (2010c) The colloidal nature of UF resins and its relation with adhesive performance. J. Appl. Polym. Sci. 118:1956–1968.10.1002/app.31112Search in Google Scholar

Ferra, J., Henriques, A., Mendes, A., Costa, M.R.N., Carvalho, L.H., Magalhães, F.D. (2011a) Comparison of UF synthesis by alkaline-acid and strongly acid processes. J. Appl. Polym. Sci. 123:1764–1772.10.1002/app.34642Search in Google Scholar

Ferra, J., Ohlmeyer, M., Mendes, A., Costa, M., Carvalho, L.H., Magalhães, F.D. (2011b) Evaluation of urea-formaldehyde adhesives performance by recently developed mechanical tests. Int. J. Adhes. Adhes. 31:127–134.10.1016/j.ijadhadh.2010.11.013Search in Google Scholar

Fink, J.K. (2013) Urea/formaldehyde resins. In: Reactive Polymers Fundamentals and Applications. Eds. Fink, J.K. Elsevier, USA. pp. 283–298.10.1016/B978-1-4557-3149-7.00005-XSearch in Google Scholar

Food and Agriculture Organization of the United Nations (2017) Forestry Production and Trade. Retrieved from http://www.fao.org/faostat/en/#home (accessed Dec 7, 2017).Search in Google Scholar

Formacare (2014) Retrieved from www.formacare.org (accessed Sep 10, 2017).Search in Google Scholar

Gao, Z., Wang, X.-M., Wan, H., Liu, Z.-M. (2009) DSC characterisation of urea-formaldehyde (UF ) resin curing. Pigment Resin Technol. 38:3–9.10.1108/03699420910923526Search in Google Scholar

Gavrilovic-Grmusa, I., Dunky, M., Djiporovic-momcilovic, M. (2012) Influence of the viscosity of UF resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints. Holzforschung 66:849–856.10.1515/hf-2011-0177Search in Google Scholar

Grigsby, W., Thumm, A. (2012) The interactions between wax and UF resin in medium density fibreboard. Eur. J. Wood Wood Prod. 70:507–517.10.1007/s00107-011-0580-9Search in Google Scholar

Guo, C., Zhou, L., Lv, J. (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21:449–456.10.1177/096739111302100706Search in Google Scholar

Han, T.L., Kumar, R.N., Rozman, H.D., Wan Daud, W.R. (2008) Influence of process variables on the reactivity of low formaldehyde emission urea-formaldehyde resin. Polym. Plast. Technol. Eng. 47:551–557.10.1080/03602550600723506Search in Google Scholar

Harmon, D.M. (2008) CHANGE – Its Challenges and Opportunities. In Engineered Wood Products Association of Australasia Conference.Search in Google Scholar

Heinemann, C., Frühwald, A., Humphrey, P.E. (1995) Evaluation of adhesive cure during hot pressing of wood-based composites. In COST Action E13 Wood Adhesion and Glued Products, Austria. pp. 163–170.Search in Google Scholar

Henriques, A., Cruz, P., Ferra, J., Martins, J., Magalhães, F.D., Carvalho, L.H. (2011) Determination of formaldehyde/urea molar ratio in amino resins by near-infrared spectroscopy. J. Appl. Polym. Sci. 124:2441–2448.10.1002/app.35128Search in Google Scholar

Henriques, A., Ferra, J., Cruz, P., Martins, J., Magalhães, F.D., Carvalho, L.H. (2012) Viscosity determination of amino resins during synthesis using near-infrared spectroscopy. Int. Wood Prod. J. 3:64–66.10.1179/2042645312Y.0000000006Search in Google Scholar

Hill, C.G., Hedren, A.M., Myers, G.E., Koutsky, J.A. (1984) Raman spectroscopy of urea–formaldehyde resins and model compounds. J. Appl. Polym. Sci. 29:2749–2762.10.1002/app.1984.070290906Search in Google Scholar

Hohne, G.W., Hemminger, W.F., Flammersheim, H.J. Differential Scanning Calorimetry. 2nd ed. Springer Berlin Heidelberg, 2003. p. 291.10.1007/978-3-662-06710-9Search in Google Scholar

Hong, W., Meng, M., Gao, D., Liu, Q., Kang, C., Huang, S., Huang, S. (2016) Thermal analysis study of modified urea-formaldehyde resin. Polym. Korea 40:707–713.10.7317/pk.2016.40.5.707Search in Google Scholar

Humphrey, P., Bolton, P., Kavvouras, P. (1989) The hot pressing of dry-formed wood-based composites. Part III. Predicted vapour pressure and temperature variation with time, compared with experimental data for laboratory boards. Holzforschung 43:265–274.10.1515/hfsg.1989.43.4.265Search in Google Scholar

ICIS (2010) Formaldehyde Uses and Market Data.Search in Google Scholar

IHS Markit. Amino Resins – Chemical Economics Handbook. 2018. Retrieved from ihsmarkit.com.Search in Google Scholar

Irle, M., Friedrich, T., Labiste, M., Richard, T. (2017) Formaldehyde in wood: where does it come from International Conference “Wood Science and Engineering in the Third Millenium” (ICWSE).Search in Google Scholar

Jeong, B., Park, B. (2017) Effect of analytical parameters of gel permeation chromatography on molecular weight measurements of urea-formaldehyde resins. J. Korean Wood Sci. Technol. 45:471–483.Search in Google Scholar

Jost, M., Sernek, M. (2009) Shear strength development of the phenol–formaldehyde adhesive bond during cure. Wood Sci. Technol. 43:153–166.10.1007/s00226-008-0217-2Search in Google Scholar

Kelley, M. (1977) Critical literature review of relationship between processing parameters and physical properties of particleboard. General Technical Report FPL-10. Forest Products Laboratory, Forest Service, U.S. Department of Agriculture.Search in Google Scholar

Kibrik, É., Steinhof, O., Scherr, G., Thiel, W.R., Hasse, H. (2014) On-line NMR spectroscopic reaction kinetic study of urea-formaldehyde resin synthesis. Ind. Eng. Chem. Res. 53:12602–12613.10.1021/ie5001746Search in Google Scholar

Kim, M.G. (1999) Examination of selected synthesis parameters for typical wood adhesive-type urea – formaldehyde resins by 13 C-NMR spectroscopy. II. J. Appl. Polym. Sci. 75:1243–1254.10.1002/(SICI)1097-4628(20000307)75:10<1243::AID-APP5>3.0.CO;2-FSearch in Google Scholar

Kim, M.G., Wan, H., No, B.Y., Nieh, W.L. (2001) Examination of selected synthesis and room-temperature storage parameters for wood adhesive-type urea-formaldehyde resins by 13C-NMR spectroscopy. IV. J. Appl. Polym. Sci. 82:1155–1169.10.1002/app.1950Search in Google Scholar

Konnerth, J., Moser, J., Gindl, W. (2010) Tensile shear strength of UF- and MUF-bonded veneer related to data of adhesives and cell walls measured by nanoindentation. Holz Als Roh-Und Werkst. 64:337–342.Search in Google Scholar

Konnerth, J., Weigl, M., Gindl-altmutter, W., Avramidis, G., Viöl, W., Gilge, M., Obersriebnig, M. (2014) Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by nanoindentation. Holzforschung 68:707–712.10.1515/hf-2013-0130Search in Google Scholar

Kumar, R., Han, T., Rozman, H.D., Daud, W., Ibrahim, M. (2007) Studies in the process optimization and characterization of low formaldehyde emission urea-formaldehyde resin by response surface methodology. J. Appl. Polym. Sci. 103:2709–2719.10.1002/app.25442Search in Google Scholar

Kumlin, K., Simonson, R. (1978) Urea-formaldehyde resins. 1. Separation of low molecular weight components in urea-formaldehyde resins by means of liquid chromatography. Die Angew. Makromol. Chemie 68:175–184.10.1002/apmc.1978.050680113Search in Google Scholar

Lecourt, M., Pizzi, A., Humphrey, P. (2003) Comparison of TMA and ABES as forecasting systems of wood bonding effectiveness. Holz Als Roh – Und Werkst. 61:75–76.10.1007/s00107-002-0346-5Search in Google Scholar

Lee, S., Shupe, T.F., Groom, L.H., Hse, C.Y. (2007) Wetting behaviors of phenol- and urea-formaldehyde. Wood Fiber Sci. 39:482–492.Search in Google Scholar

Lei, H., Frazier, C. (2015) Curing behaviour of melamine-urea-formaldehyde (MUF) resins adhesive. Int. J. Adhes. Adhes. 62:40–44.10.1016/j.ijadhadh.2015.06.013Search in Google Scholar

Leidl, M., Huber, W.F., Schwarzinger, C., Endesfelder, A. (2007) Characterization of a linear melamine formaldehyde resin. Int. J. Polym. Anal. Charact. 12:301–314.10.1080/10236660701355337Search in Google Scholar

Li, T., Guo, X., Liang, J., Wang, H., Xie, X., Du, G. (2015) Competitive formation of the methylene and methylene ether bridges in the urea – formaldehyde reaction in alkaline solution : a combined experimental and theoretical study. Wood Sci. Technol. 49:475–493.10.1007/s00226-015-0711-2Search in Google Scholar

Li, T., Liang, J., Cao, M., Guo, X., Xie, X., Du, G. (2016) Re-elucidation of the acid-catalyzed urea – formaldehyde reactions : a theoretical and 13 C-NMR study. J. Appl. Polym. Sci. 44339:1–18.10.1002/app.44339Search in Google Scholar

Liu, C., Luo, J., Li, X., Gao, Q., Li, J. (2016) Effects of compounded curing agents on properties and performance of urea formaldehyde resin. J. Polym. Environ. 26:158–165.10.1007/s10924-016-0913-1Search in Google Scholar

Loxton, C., Thumm, A., Grigsby, W.J., Adams, T.A., Ede, R.M. (2003) Resin distribution in medium density fiberboard. Quantification of UF resin distribution on blowline- and dry-blended MDF fiber and panels. Wood Fiber Sci. 35:370–380.Search in Google Scholar

Lu, X., Pizzi, A. (1998a) Curing conditions effects on the characteristics of thermosetting adhesives-bonded wood joints – Part 1: Substrate influence on TTT and CHT curing diagrams of wood adhesives. Holz Als Roh-Und Werkst. 56:339–346.10.1007/s001070050330Search in Google Scholar

Lu, X., Pizzi, A. (1998b) Curing conditions effects on the characteristics of thermosetting adhesives-bonded wood joints – Part 2: Hot postcuring improvement of UF particleboards and its temperature forecasting model. Holz Als Roh-Und Werkst. 56:339–346.10.1007/s001070050330Search in Google Scholar

Ludlam, P.R., King, J.G., Anderson, R.M. (1986) Liquid chromatographic procedure for the separation and characterisation of simple urea-formaldehyde reaction products. Analyst 111:1265–1271.10.1039/an9861101265Search in Google Scholar

Magnusson, A. (2015) Syntehsis of New MUF Resins and Analysis of the Curing in the Glue Joint. Degree Project. KTH Royal Institute of Technology.Search in Google Scholar

Maku, T., Hamada, R., Sasaki, H. (1959) Studies on the particleboard. Report 4: Temperature and moisture distribution in particleboard during hot-pressing.Search in Google Scholar

Maloney, T. Modern Particleboard & Dry-Process Fiberboard Manufacturing. Miller Freeman Publications, San Francisco California, 1989.Search in Google Scholar

Mantanis, G., Athanassiadou, E., Barbu, M., Wijnendaele, K. (2017) Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Mater. Sci. Eng. 13:104–116.10.1080/17480272.2017.1396622Search in Google Scholar

Market Research Future (2017) Amino Resins Market Research Report – Forecast to 2023. Retrieved from www.marketresearchfuture.com/reports/amino-resins-market-1146 (accessed Feb 25, 2017).Search in Google Scholar

Martins, J., Vasconcelos, E., Pereira, J., Ferra, J., Cruz, P., Magalhães, F.D., Carvalho, L.H. (2012) A new methodology to predict the optimum pressing time for wood-based panels produced with low formaldehyde emission resins. In 66th International Convention. Washington DC.Search in Google Scholar

Martins, J., Pereira, J., Coelho, C., Ferra, J., Mena, P., Magalhães, F.D., Carvalho, L.H. (2013) Adhesive bond strength development evaluation using ABES in different lignocellulosic materials. Int. J. Adhes. Adhes. 47:105–109.10.1016/j.ijadhadh.2013.08.003Search in Google Scholar

Meder, R., Ebdon, N., Warburton, P., Stahl, W., Woolley, S., Earnshae, S. (2011) NIR Assessment of MUF Resin Quality for Composite Panel Production. Final report. Forest and Wood Products Australia.Search in Google Scholar

Metrohm NIR Spectroscopy – A guide to near-infrared spectroscopic analysis of industrial manufacturing processes, 2013.Search in Google Scholar

Meyer, B. C-13 NMR Identification of Urea-formaldehyde resins. In ACS National Meeting. 1981.Search in Google Scholar

Minopoulou, E., Dessipri, E., Chryssikos, G.D., Gionis, V., Paipetis, A., Panayiotou, C. (2003) Use of NIR for structural characterization of urea-formaldehyde resins. Int. J. Adhes. Adhes. 23:473–484.10.1016/S0143-7496(03)00089-7Search in Google Scholar

Muller, U., Pretschuh, C., Mitter, R., Knappe, S. (2017) Dielectric analysis as a cure monitoring system for UF particle boards. Int. J. Adhes. Adhes. 73:45–50.10.1016/j.ijadhadh.2016.07.016Search in Google Scholar

Myers, G. (1984) How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. For. Prod. J. 34:34–41.Search in Google Scholar

Nemade, K.R., Waghuley, S.A. (2014) Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J. Phys. 88:577–583.10.1007/s12648-014-0454-1Search in Google Scholar

No, B.Y., Kim, M.G. (2004) Syntheses and properties of low-level melamine-modified urea-melamine-formaldehyde resins. J. Appl. Polym. Sci. 93:2559–2569.10.1002/app.20778Search in Google Scholar

Nuryawan, A., Park, B. (2017) Quantification of hydrolytic degradation of cured urea-formaldehyde resin adhesives using confocal laser scanning microscopy. Int. J. Adhes. Adhes. 74:1–5.10.1016/j.ijadhadh.2016.12.004Search in Google Scholar

Nuryawan, A., Singh, A.P., Park, B., Causin, V. (2014) Micro-morphological features of cured urea-formaldehyde adhesives detected by transmission electron microscopy micro-morphological features of cured urea-formaldehyde adhesives detected by transmission electron microscopy. J. Adhes. 92:121–134.10.1080/00218464.2014.1003545Search in Google Scholar

Nuryawan, A., Singh, A.P., Zanetti, M., Park, B., Causin, V. (2017) Insights into the development of crystallinity in liquid urea-formaldehyde resins. Int. J. Adhes. Adhes. 72:62–69.10.1016/j.ijadhadh.2016.10.004Search in Google Scholar

Obersriebnig, M., Veigel, S., Konnerth, J. (2012) Determination of adhesive energy at the wood cell-wall/UF interface by nanoindentation (NI). Holzforschung 66:781–787.10.1515/hf-2011-0205Search in Google Scholar

Paiva, N., Henriques, A., Cruz, P., Ferra, J., Carvalho, L.H., Magalhães, F.D. (2012a) Production of melamine fortified urea-formaldehyde resins with low formaldehyde emission. J. Appl. Polym. Sci. 124:2311–2317.10.1002/app.35282Search in Google Scholar

Paiva, N., Pereira, J., Ferra, J., Cruz, P., Carvalho, L.H., Magalhães, F.D. (2012b) Study of influence of synthesis conditions on properties of melamine-urea formaldehyde resins. Int. Wood Prod. J. 3:51–57.10.1179/2042645312Y.0000000009Search in Google Scholar

Pakdel, H., Cyr, P.L., Riedl, B., Deng, J. (2008) Quantification of urea formaldehyde resin in wood fibers using X-ray photoelectron spectroscopy and confocal laser scanning microscopy. Wood Sci. Technol. 42:133–148.10.1007/s00226-007-0155-4Search in Google Scholar

Papadopoulou, E., Kountouras, S., Nikolaidou, Z., Michailof, C., Kalogiannis, K.A., Lappas, A. (2016) Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catlytic pyrolysis of European Wood. Holzforschung 70:1139–1145.10.1515/hf-2016-0056Search in Google Scholar

Park, B., Causin, V. (2013) Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Eur. Polym. J. 49:532–537.10.1016/j.eurpolymj.2012.10.029Search in Google Scholar

Park, B., Jeong, H. (2011) Hydrolytic stability and crystallinity of cured urea – formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Int. J. Adhes. Adhes. 31:524–529.10.1016/j.ijadhadh.2011.05.001Search in Google Scholar

Park, B., Kim, J. (2008) Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios. J. Appl. Polym. Sci. 108:2045–2051.10.1002/app.27595Search in Google Scholar

Park, B., Kim, Y., Singh, A., Lim, K. (2002) Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13 C CP/MAS NMR spectroscopy. J. Appl. Polym. Sci. 88:2677–2687.10.1002/app.12115Search in Google Scholar

Park, B., Jeong, H., Lee, S. (2011) Morphology and chemical elements detection of cured urea – formaldehyde resins. J. Appl. Polym. Sci. 120:1475–1482.10.1002/app.33247Search in Google Scholar

Park, B., Frihart, C., Yu, Y., Singh, A. (2013) Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method. Eur. Polym. J. 49:3089–3094.10.1016/j.eurpolymj.2013.06.013Search in Google Scholar

Pereira, C., Blanchard, C., Carvalho, L.H., Costa, C. (2004) High frequency heating of medium density fiberboard (MDF): theory and experiment. Chem. Eng. Sci. 59:735–745.10.1016/j.ces.2003.09.038Search in Google Scholar

Pereira, C., Carvalho, L.H., Costa, C. (2006) Modeling the continuous hot-pressing of MDF. Wood Sci. Technol. 40:308–326.10.1007/s00226-006-0067-8Search in Google Scholar

Pizzi, A. (1983) Amino resin wood adhesives. In Wood Adhesives Chemistry and Technology, Vol. 1.Search in Google Scholar

Pizzi, A. (2003) Urea–formaldehyde adhesives. In Handbook of Adhesive Technology. Eds. Pizzi, A., Mittal, K.L. Taylor & Francis, UK.10.1201/9780203912225.ch31Search in Google Scholar

Pizzi, A., Ibeh, C. Aminos. In: Handbook of Thermoset Plastics. 3rd ed. William Andrew – Applied Science Publisher, EUA, 2014.10.1016/B978-1-4557-3107-7.00004-XSearch in Google Scholar

Pizzi, A., Mercer, A. (1994) Considerations on the principles of preparation of melamine-urea-formaldehyde adhesive resins for particleboard. Holzforsch. Holzverw. 46:51–54.Search in Google Scholar

Pizzi, A., Mittal, K.L. Handbook of Adhesive Technology. 2nd ed. (Taylor & Francis, Ed.). Marcel Dekker Inc, UK, 2003.Search in Google Scholar

Pretschuh, C., Müller, U., Wuzella, G., Dorner, F., Eckmann, R. (2012) Dielectric analysis as curing control for aminoplast resins – correlation with DMA. Eur. J. Wood Wood Prod. 70:749–753.10.1007/s00107-012-0612-0Search in Google Scholar

Qin, L., Lin, L., Fu, F. (2016) Microstructural and micromechanical characterization of modified urea-formaldehyde resin penetration into wood. Bioresources 11:182–194.10.15376/biores.11.1.182-194Search in Google Scholar

Rachtanapun, P., Heiden, P. (2002) Thermoplastic polymers as modifiers for urea- formaldehyde (UF) wood adhesives. II. Procedures for the preparation and characterization of thermoplastic-modified UF wood composites. J. Appl. Polym. Sci. 87:898–907.10.1002/app.11423Search in Google Scholar

Rammon, R.M. The Influence of Synthesis Parameters on the Structure of Urea-formaldehyde Resins. Washington State University, 1984.Search in Google Scholar

Rammon, R.M. (1986) The chemical structure of UF Resins. J. Adhes. 19:115–135.10.1080/00218468608071217Search in Google Scholar

Ribeiro, H.A., Carvalho, L. H., Martins, J., Costa, C. (2011) Transport phenomena in paper and wood-based panels production. Mass Transf. Multiph. Syst. Its Appl. 15:313–342.Search in Google Scholar

Roffael, E., Behn, C., Dix, B. (2012) On the formaldehyde release of wood particles. Eur. J. Wood Wood Prod. 70:911–912.10.1007/s00107-012-0625-8Search in Google Scholar

Salem, M., Bohm, M. (2013) Understanding of formaldehyde emissions from solid wood: an overview. Bioresources 8:4775–4790.10.15376/biores.8.3.4775-4790Search in Google Scholar

Salthammer, T., Mentese, S. (2008) Comparison of analytical techniques for the determination of aldehydes in test chambers. Chemosphere 73:1351–1356.10.1016/j.chemosphere.2008.06.054Search in Google Scholar PubMed

Salthammer, T., Mentese, S., Marutzky, R. (2010) Formaldehyde in the indoor environment. Chem. Rev. 110:2536–2572.10.1021/cr800399gSearch in Google Scholar PubMed PubMed Central

Schrod, M., Rode, K., Braun, D., Pasch, H. (2003) Matrix-assisted laser desorption/ionization mass spectrometry of synthetic polymers. VI. Analysis of phenol–urea–formaldehyde cocondensates. J. Appl. Polym. Sci. 90:2540–2548.10.1002/app.12989Search in Google Scholar

Shao-sen, L.I.N., Jun, Y.A.N., Hong-guang, L.I., Shi-guo, D.U. (2016) Inhibitor performance and the preparation study of urea formaldehyde resin matrix composite particle. In 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016). pp. 312–316.Search in Google Scholar

Siimer, K., Kaljuvee, T., Christjanson, P., Lasn, I. (2006) Curing of urea-formaldehyde resins on a wood substrate. J. Therm. Anal. Calorim. 84:71–77.10.1007/s10973-005-7185-7Search in Google Scholar

Siimer, K., Christjanson, P., Kaljuvee, T., Pehk, T., Lasn, I., Saks, I. (2008) TG-DTA study of melamine-urea-formaldehyde resins. J. Therm. Anal. Calorim. 92:19–27.10.1007/s10973-007-8721-4Search in Google Scholar

Singh, A.P., Causin, V., Nuryawan, A., Park, B. (2014) Morphological, chemical and crystalline features of urea-formaldehyde resin cured in contact with wood. Eur. Polym. J. 56:185–193.10.1016/j.eurpolymj.2014.04.014Search in Google Scholar

Singh, A.P., Nuryawan, A., Park, B., Lee, K.H. (2015) Urea-formaldehyde resin penetration into Pinus radiata tracheid walls assessed by TEM-EDXS. Holzforschung 69:303–306.10.1515/hf-2014-0103Search in Google Scholar

Soulard, C., Kamoun, C., Pizzi, A. (1998) Uron and uron-urea-formaldehyde interior wood adhesives. Holzforsch. Holzverw. 50:89–94.Search in Google Scholar

Stefke, B., Dunky, M. (2006) Catalytic influence of wood on the hardening behavior of formaldehyde-based resin adhesives used for wood-based panels. J. Adhes. Sci. Technol. 20:761–785.10.1163/156856106777638752Search in Google Scholar

Steinhof, O., Scherr, G., Hasse, H. (2015) Investigation of the reaction of 1,3-dimethylurea with formaldehyde by quantitative on-line NMR spectroscopy: a model for the urea-formaldehyde system. Magn. Reson. Chem. 54:457–476.10.1002/mrc.4274Search in Google Scholar PubMed

Stockel, F., Konnerth, J., Kantner, W., Moser, J., Gindl, W. (2009) Mechanical characterisation of adhesives in particle boards by means of nanoindentation. Eur. J. Wood Wood Prod. 68:421–426.10.1007/s00107-009-0380-7Search in Google Scholar

Strickler, M. (1959) Effects of press cycle and moisture content on properties of Douglas-fir flakeboard. For. Prod. J. 9:203–215.Search in Google Scholar

Sun, Q.N., Hse, C.Y., Shupe, T.F. (2014) Effect of different catalysts on urea-formaldehyde resin synthesis. J. Appl. Polym. Sci. 131:1–7.10.1002/app.40644Search in Google Scholar

Thoemen, H., Humphrey, P. (2001) Hot pressing of wood-based composites: selected aspects of the physics investigated by means of simulation. In 5th European Products Symposium.Search in Google Scholar

Thoemen, H., Humphrey, P. (2006) Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer. Holz Als Roh – Und Werkst. 64:1–10.10.1007/s00107-005-0027-2Search in Google Scholar

Thoemen, H., Heinemann, C., Hanvongjirawat, W. (2004) The virtual hot press: a simulation platform for process optimization and training. In: Proceedings of 4th European Wood-Based Panels Symposium, Hanover. WKI, Braunschweig, Germany. pp. 13.Search in Google Scholar

Thoemen, H., Irle, M., Sernek, M. Wood-Based Panels – An Introduction for Specialists. Brunel University Press, London, 2010.Search in Google Scholar

Tohmura, S., Hse, C.-Y., Higuchi, M. (2000) Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins. J. Adhes. Sci. 46:303–309.10.1007/BF00766221Search in Google Scholar

Tomita, B., Hirose, Y. (1976) Urea-formaldehyde resins: NMR study on base-catalyzed reaction of formaldehyde with urea in deuterium oxide. J. Poly. Sci. 14:387–401.10.1002/pol.1976.170140211Search in Google Scholar

Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition, 1990.Search in Google Scholar

Vassilikou-dova, A., Kalogeras, I.M. (2009) Chapter 6 – Dielectric Analysis (DEA). In: Thermal Analysis of Polymers: Fundametals and Applications. Eds. Joseph D. Menczel and R. Bruce Prime. John Wiley & Sons, Inc., EUA. pp. 497–613.10.1002/9780470423837.ch6Search in Google Scholar

Vnucec, D., Kutnar, A., Gorsek, A. (2017) Soy-based adhesives for wood-bonding – a review. J. Adhes. Sci. and Technol. 31:910–931.10.1080/01694243.2016.1237278Search in Google Scholar

Wang, S., Winistorfer, P. (2001) Monitoring resin cure during particleboard manufacture using a dielectric system. Wood Fiber Sci. 35:532–539.Search in Google Scholar

Weigl, M., Wimmer, R., Sykacek, E., Steinwender, M. (2009) Wood-borne formaldehyde varying with species, wood grade, and cambial age. Forest Products J. 59:88–92.Search in Google Scholar

Williams, W. (1983) US Patent 4410685 – Hydrolytically stable urea-formaldehyde resins and process for manufacturing them.Search in Google Scholar

Wood Based Panels International – wbpi (2017) Volume 37.Search in Google Scholar

Wood Panel Industries Federation National Panel Products Division, TRADA Technology Limited, Building Research Establishment Limited (2009) Panel guide. Retrieved from http://www.wpif.org.uk/PanelGuide.asp.Search in Google Scholar

Wu, Z., Lei, H., Du, G., Cao, M., Xi, X., Liang, J. (2016) Urea – formaldehyde resin prepared with concentrated formaldehyde. J. Adhes. Sci. Technol. 30:2655–2666.10.1080/01694243.2016.1193963Search in Google Scholar

Xing, C., Riedl, B., Cloutier, A., Shaler, S.M. (2005) Characterization of urea–formaldehyde resin penetration into medium density fiberboard fibers. Wood Sci. Technol. 39:374–384.10.1007/s00226-005-0294-4Search in Google Scholar

Youngquist, J. (1999) Chapter 10 – Wood-based Composites and Panel Products. Wood as an engineering material. Forest Products Laboratory. pp. 463.Search in Google Scholar

Zanetti, M., Pizzi, A. (2003) Low addition of melamine salts for improved melamine-urea-formaldehyde adhesive water resistance. J. Appl. Polym. Sci. 88:287–292.10.1002/app.11687Search in Google Scholar

Zanetti, M., Pizzi, A., Beaujean, M., Pasch, H., Rode, K., Dalet, P. (2002) Acetals-induced strength increase of melamine-urea-formaldehyde (MUF) polycondensation adhesives. II. Solubility and colloidal state disruption. J. Appl. Polym. Sci. 86:1855–1862.10.1002/app.11105Search in Google Scholar

Zanetti, M., Pizzi, A., Faucher, P. (2004) Low-volatility acetals to upgrade the performance of melamine-urea-formaldehyae wood adhesive resins. J. Appl. Polym. Sci. 92:672–675.10.1002/app.13682Search in Google Scholar

Zanetti, M., Causin, V., Saini, R., Cardin A., Cavalli R. (2014) Effect of tannin on increasing UF adhesive performance at high temperature investigated by TMA and TGA analysis. Eur. J. Wood Wood Prod. 72:385–392.10.1007/s00107-014-0795-7Search in Google Scholar

Zhang, Y., Yang, C., Zheng, J., Lu, M. (2015) Crystallization behavior of stable urea formaldehyde resin dispersed by polyvinyl alcohol. Iran Polym. J. 24:13–20.10.1007/s13726-014-0295-ySearch in Google Scholar

Zhu, X., Xu, E., Lin, R., Wang, X., Gao, Z. (2014) Decreasing the formaldehyde emission in urea-formaldehyde using modified starch by strongly acid process. J. Appl. Polym. Sci. 40202:2–7.10.1002/app.40202Search in Google Scholar

Zohuriaan-mehr, N.E. M.J., Kabiri, S.M.K., Bouhendi, H. (2017) Hydroxymethyl furfural-modified urea – formaldehyde resin : synthesis and properties. Eur. J. Wood Wood Prod. 75:71–80.10.1007/s00107-016-1072-8Search in Google Scholar

Zombori, B. (2001) Modeling the Transient effects during the hot-pressing of wood-based composites Chapter 2. Simulation of the mat formation process. In: Modeling the Transient Effects during the Hot-Pressing of Wood-Based Composites. pp. 8–40, Doctoral Thesis.Search in Google Scholar

Zombori, B., Kamke, F., Watson, L. (2003) Simulation of the internal conditions during the hot-pressing process. Wood Fiber Sci. 35:2–23.Search in Google Scholar

Zorba, T., Papadopoulou, E., Hatjiissaak, A., Paraskevopoulos, K.M., Chrissafis, K. (2008) Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J. Therm. Anal. Calorim. 92:29–33.10.1007/s10973-007-8731-2Search in Google Scholar

Received: 2017-11-08
Accepted: 2018-03-19
Published Online: 2018-04-30
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2017-0182/html
Scroll to top button