Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 72, Issue 8


Modeling kraft cooking kinetics of fiber mixes from TMP and unbleached kraft pulps for assessment of old corrugated cardboard delignification

Lucas Dollié / Gérard Mortha / Nathalie Marlin
Published Online: 2018-05-29 | DOI: https://doi.org/10.1515/hf-2017-0197


Kraft cooking kinetics of three different lignocellulosic substrates have been investigated, namely fibers from unbleached kraft pulp (UBKP from Pinus radiata), fibers from softwood unbleached thermomechanical pulp (TMP), and wood chips for TMP production. UBKP and TMP were considered to be representative of a fiber mixture obtained after the pulping and cleaning of old corrugated cardboards (OCC). The characteristic parameters for fitting a mathematical model for kraft pulping were estimated. Based on the results, a “fiber mixture cooking model” was developed to predict the cooking kinetics of TMP/UBKP mixes, accounting for the proportion of each component. The aim was to tailor OCC upcycling in terms of high quality products, which can be used for various purposes including paper and non-paper applications.

Keywords: kinetic model; kraft cooking; kraft pulp fibers; old corrugated cardboard (OCC); TMP fibers; upcycling


  • Ackert, J.E., Koch, D.D., Edwards, L.L. (1975) Displacement chlorination of kraft pulps: I. An experimental study and comparison of models. TAPPI J. 58:141–145.Google Scholar

  • Adamopoulos, S., Martinez, E., Ramirez, D. (2007) Characterization of packaging grade papers from recycled raw materials through the study of fiber morphology and composition. Global NEST J. 9:20–28.Google Scholar

  • AFNOR standard (1981) NFT 12-005 var. A cellulose-determination of the maximum viscosity index of cellulose in diluted solutions.Google Scholar

  • Cho, H.J., Sarkanen, K.V. (1985) Alternatives to H. factor measurement in the kraft process. Pap. Puu 67:121–124.Google Scholar

  • Danielewicz, D., Surma-Ślusarska, B. (2015) Properties of bleached pulps from low and high kappa number old corrugated containers (OCC). Fibres Text. East. Eur. 5:129–135.Web of ScienceGoogle Scholar

  • De Ruvo, A., Farnstrand, P.A., Hagen, N., Haglund, N. (1986) Upgrading of pulp from corrugated containers by oxygen delignification. TAPPI J. 69:100–103.Google Scholar

  • Economou, A.M., Economides, D., Vlyssides, A.G. (1997) Totally chlorine free bleaching of secondary fibers of low mechanical pulp content with the application of oxygen, ozone and in situ produced dimethyldioxirane. Prog. Pap. Recycl. 7:37–49.Google Scholar

  • Gustafson, R.R., Sleicher, C.A., McKean, W.T., Finlayson, B.A. (1983) Theoretical model of the kraft pulping process. Ind. Eng. Chem. Proc. DD. 22:87–96.CrossrefGoogle Scholar

  • Hamzeh, Y., Izadyar, S., Mortha, G. (2007) Elemental chlorine free delignification of chemical pulp in flow through reactor. J. Appl. Sci. 7:3786–3790.CrossrefGoogle Scholar

  • Jackson, M., Croon, I.L., Nardi, F. (1994) Bleached fiber from OCC. TAPPI J. 77:153–159.Google Scholar

  • Kihlman, M., Aldaeus, F., Chedid, F., Germgård, U. (2012) Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions. Holzforschung 66:601–606.Web of ScienceGoogle Scholar

  • Koç, B.O., Gümüşkaya, E., Erişir, E., Peşman, E., Kirci, H. (2017) Comparison of reinforced oxygen delignification methods for old corrugated board (OCC) fibers. Drewno  60:47–64.Google Scholar

  • Lapierre, L., Bouchard, J. (1997) Molecular weight determination of softwood kraft cellulose. Presented at the 9th ISWPC, Montreal, Canada: L6–1–L6–6.Google Scholar

  • Li, Z., Ni, I., Van Heiningen, A.R.P. (1996) Bleaching of mechanical pulps in a displacement system: interesting results were obtained. Pulp Pap. – Canada 97:46–50.Google Scholar

  • Ma, Y., Hummel, M., Määttänen, M., Särkilahti, A., Harlin, A., Sixta, H. (2016) Upcycling of waste paper and cardboard to textiles. Green Chem. 18:858–866.CrossrefWeb of ScienceGoogle Scholar

  • Mortha, G., Jain, S. (2008) SFGP 2007 – modelling kraft cooking of wood species mixtures. Int. J. Chem. Reac. Eng. 6:2–5.Google Scholar

  • Nguyen, X.T., Simard, L. (1996) On the delignification of OCC with hydrogen peroxide. International Pulp Bleaching Conference, TAPPI Press, Washington, DC. pp. 569–577.Google Scholar

  • Östberg, L., Kvarnlöf, N., Germgård, U. (2013) The hemicellulose content in two chemical pulps and its influence on Fock’s test and the gamma number of the resulting viscose dope. Nordic Pulp Pap. Res. J. 28:377–380.CrossrefGoogle Scholar

  • Peredo, K., Reyes, H., Escobar, D., Vega-Lara, J., Berg, A., Pereira, M. (2015) Acetylation of bleached kraft pulp: effect of xylan content on properties of acetylated compounds. Carbohyd. Polym. 117:1014–1020.Web of ScienceCrossrefGoogle Scholar

  • Rapson, W.H., Anderson, C.B. (1966) Dynamic bleaching: continuous movement of pulp through liquor increases bleaching rate. TAPPI 49:329–334.Google Scholar

  • Sihtola, H. (1963) Comparison and conversion of viscosity and DP values determined by different methods. Pap. Puu 45:225–323.Google Scholar

  • Sixta, H. (2006) Handbook of pulp. In: Pulp Properties and Applications, Ed. Sixta, H. Wiley-VCH, Weinheim. pp. 1036.Google Scholar

  • Sunyoung, L., McKean, W.T., Gustafson, R.R. (1996) Manufacture of Bleached Pulp from Recycled OCC Linerboard. Pulping Conference, Nashville. pp. 885–893.Google Scholar

  • TAPPI standard (2007) T 204. Cm-07, Solvent extractives of wood and pulp.

  • TAPPI standard (2011) T 222. Om-11, Acid-insoluble lignin in wood and pulp.

  • TAPPI standard (2012) T 211. Cm-12, Ash in wood, pulp, paper and paperboard: combustion at 525°C.

  • TAPPI standard (2013) T 210. Cm-13, Sampling and testing wood pulp shipments for moisture.

  • Vroom, K.E. (1957) The H factor: a means of expressing cooking times and temperatures as a single variable. Pulp Paper Mag. Can. 58:228–231.Google Scholar

About the article

Received: 2017-11-30

Accepted: 2018-04-25

Published Online: 2018-05-29

Published in Print: 2018-07-26

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 72, Issue 8, Pages 621–629, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0197.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in