Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 1

Issues

Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw

Cristina Álvarez
  • Biofuels Unit, Energy Department, CIEMAT, 28040 Madrid, Spain
  • Doctorate Program in Science of the International School of Doctorate, UNED, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Felicia Sáez / Alberto González / Ignacio Ballesteros / José Miguel Oliva / María José Negro
Published Online: 2018-10-25 | DOI: https://doi.org/10.1515/hf-2018-0101

Abstract

Agricultural residues, such as barley straw (BS), are attractive sources for the production of chemicals and fuels based on the biorefinery principle. In the present paper, BS was steam exploded at 180°C/30 min and then 90% of the cellulose and 60% of the hemicellulose were recovered in solid and liquid fractions respectively, which were used for ethanol and xylooligosaccharides (XOS) production. In the course of enzymatic hydrolysis (EH), different solid loading (SL) (10–20% w/v) and enzyme doses (15 and 30 FPU g−1 glucan) were applied to optimize the yield of glucose concentrations, while 92 g l−1 glucose was released at 20% SL and 30 FPU g−1 glucan enzyme dosage. For ethanol production, two different process configurations were compared: separate hydrolysis and fermentation (SHF) or prehydrolysis with simultaneous saccharification and fermentation (PSSF). To transform the soluble hemicellulose into xylooligomers, two glycoside hydrolases (GH) families 10 and 11 endoxylanases were used. Reaction times, enzyme dose and several combinations of enzymes were optimized to maximize the conversion into XOS. Under the pretreatment conditions indicated above, 14 g of ethanol was obtained via the PSSF approach and 11.1 g of XOS (with DP2–DP6) was obtained per 100 g of raw material.

This article offers supplementary material which is provided at the end of the article.

Keywords: barley straw; bioethanol; cellulolytic enzyme; endoxylanases; xylooligosaccharides

References

  • Aachary, A.A., Prapulla, S.G. (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 10:2–16.Web of ScienceCrossrefGoogle Scholar

  • Álvarez, C., González, A., Negro, M.J., Ballesteros, I., Oliva, J.M., Saéz, F. (2017) Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides. Ind. Crops Prod. 99:41–48.CrossrefWeb of ScienceGoogle Scholar

  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101:4851–4861.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Alvira, P., Negro, M.J., Ballesteros, I., González, A., Ballesteros, M. (2016) Steam explosion for wheat straw pretreatment for sugars production. Bioethanol 2:66–75.Google Scholar

  • Biely, P., Singh, S., Puchart, V. (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol. Adv. 34:1260–1274.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Cara, C., Ruiz, E., Carvalheiro, F., Moura, P., Ballesteros, I., Castro, E., Gírio, F. (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind. Crops Prod. 40:225–231.CrossrefWeb of ScienceGoogle Scholar

  • Cherubini, F. (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ. Convers. Manage. 51:1412–1421.CrossrefWeb of ScienceGoogle Scholar

  • Deloule, V., Chirat, C., Boisset, C., Toussaint, B., Chroboczck, J. (2017) Production of hemicellulose oligomers from softwood chips using autohydrolysis followed by an enzymatic post-hydrolysis. Holzforschung 71:575–581.Web of ScienceGoogle Scholar

  • Dionex Analysis of Carbohydrates by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) (2000) Technical Note 20.Google Scholar

  • Duque, A., Manzanares, P., Ballesteros, I., Ballesteros, M. (2016) Steam explosion as lignocellulosic biomass pretreatment. In: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. Ed. Mussatto, S.I. Elsevier, Amsterdam. pp. 349–368.Google Scholar

  • European Environment Agency (www.eea.europa.eu/). Greenhouse gas emissions from transport (last modified 09 25 2018).

  • FAOSTAT (2016) http://faostat3.fao.org/ (last accessed 4.29.2018).

  • García-Aparicio, M.P., Oliva, J.M., Manzanares, P., Ballesteros, M., Ballesteros, I., González, A., Negro, M.J. (2011) Second generation ethanol production from exploded barley straw by Kluyveromyces marxianus CETC 10875. Fuel 90:1624–1630.CrossrefGoogle Scholar

  • Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K., Reid. G. (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491–502.PubMedGoogle Scholar

  • Gullón, P., Gullón, B., Cardelle-Cobas, A., Alonso, J.L., Pintado, M., Gomes, A. (2014) Effects of hemicellulose-derived saccharides on behavior of Lactobacilli under simulated gastrointestinal conditions. Food Res. Int. 64:880–888.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Hodge, D.B., Karim, M.N., Schell, D.J., McMillan, J.D. (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour. Technol. 99:8940–8948.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Huang, C., Chenhuan, L., Xinxing, W., Yang, H., He, J., Huang, C., Li, X., Yong, Q. (2017) An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw. Bioresour. Technol. 241:228–235.CrossrefWeb of ScienceGoogle Scholar

  • Kajaste, R. (2014) Chemicals from biomass – managing greenhouse gas emissions in biorefinery production chains – a review. J. Clean. Prod. 75:1–10.Web of ScienceCrossrefGoogle Scholar

  • Koppram, R., Tomás-Pejó, E., Xiros, C., Olsson, L. (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 32:46–53.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Linares-Pastén, J.A., Aronsson, A., Karlsson, E.N. (2018) Structural considerations on the use of endo-xylanases for the production of prebiotic xylooligosaccharides from biomass. Curr. Protein Pept. Sci. 19:49–67.Web of ScienceGoogle Scholar

  • López-Linares, J.C., Ballesteros, I., Tourán, J., Cara, C., Castro, E., Ballesteros, M., Romero, I. (2015) Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production. Bioresour. Technol. 190:97–105.Web of ScienceCrossrefPubMedGoogle Scholar

  • Martín-Sampedro, R., Eugenio, M.E., García, J.C., López, F., Villar, J.C., Díaz, M.J. (2012) Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass Bioenerg. 42:97–106.Web of ScienceCrossrefGoogle Scholar

  • Mechelke, M., Koecka, D.E., Broekera, J., Roesslera, B., Krabichlera, F., Schwarza, W.H., Zverlova, V.V., Liebla, W. (2017) Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica – six new xylanases, three arabinofuranosidases and one xylosidase. J. Biotechnol. 257:122–130.CrossrefWeb of SciencePubMedGoogle Scholar

  • Modenbach, A.A., Nokes, S.E. (2013) Enzymatic hydrolysis of biomass at high-solids loadings – a review. Biomass Bioenerg. 56:526–544.CrossrefWeb of ScienceGoogle Scholar

  • Moncada, J., Aristizábal, V., Cardona, C.A. (2016) Design strategies for sustainable biorefineries. Biochem. Eng. J. 116:122–134.Web of ScienceCrossrefGoogle Scholar

  • Morgan, N.K., Wallace, A., Bedford, M., Choct, M. (2017) Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohyd. Polym. 167:290–296.Web of ScienceCrossrefGoogle Scholar

  • Muzamal, M., Jedvert, K., Theliander, H., Rasmuson, A. (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66.Web of ScienceGoogle Scholar

  • Oliva, J., Negro, M., Manzanares, P., Ballesteros, I., Chamorro, M., Sáez, F., Ballesteros, M., Moreno, A. (2017) A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation 3:15.CrossrefGoogle Scholar

  • Otiendo, D.O., Ahring, B.K. (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr. Res. 360:84–92.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Patel, S., Goyal, A. (2012) The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2:115–125.Web of ScienceGoogle Scholar

  • Renewable Energy Directive (2016) Proposal for a Directive of the European Parliament and the Council on the promotion of the use of energy from renewable source. COM (2016) 0767.Google Scholar

  • Rico, X., Gullón, B., Alonso, J.L., Parajó, J.C., Yañez, R. (2018) Valorization of peanut shells: manufacture of bioactive oligosaccharides. Carbohyd. Polym. 183:21–28.CrossrefWeb of ScienceGoogle Scholar

  • Ruiz, E., Gullón, B., Moura, P., Carvalheiro, F., Eibes, G., Cara, C., Castro, E. (2017) Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohyd. Polym. 169:149–156.Web of ScienceCrossrefGoogle Scholar

  • Schütt, F., Puls, J., Saake, B. (2011) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung 65:453–459.Web of ScienceGoogle Scholar

  • Searle, S., Malins, C. (2013) Availability of cellulosic residues and wastes in the EU. International Council on Clean Transportation, White paper.Google Scholar

  • Slavin, J. (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435.CrossrefWeb of SciencePubMedGoogle Scholar

  • Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W. (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J. Agric. Food Chem. 58:9043–9053.CrossrefWeb of SciencePubMedGoogle Scholar

  • Van Dyk, J.S., Pletschke, B.I. (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes – factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30:1458–1480.CrossrefWeb of SciencePubMedGoogle Scholar

About the article

Received: 2018-04-30

Accepted: 2018-09-27

Published Online: 2018-10-25

Published in Print: 2018-12-19


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors acknowledge the financial support by the Comunidad de Madrid-CM (Spain) (Project RESTOENE-2-CM, S2013/MAE-2882).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 1, Pages 35–44, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0101.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in