Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 1

Issues

Lignin-based foams as insulation materials: a review

Vebi Mimini
  • Division of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, Tulln A-3430, Austria
  • Wood Kplus – Kompetenzzentrum Holz GmbH, Altenberger Straße 69, Linz A-4040, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vasken Kabrelian / Karin Fackler / Hubert Hettegger
  • Division of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, Tulln A-3430, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antje Potthast
  • Division of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, Tulln A-3430, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Rosenau
  • Corresponding author
  • Division of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, Tulln A-3430, Austria
  • Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, Åbo/Turku FI-20500, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-08 | DOI: https://doi.org/10.1515/hf-2018-0111

Abstract

The bulk use of renewable polymers is currently largely limited to cellulose and, less significantly, hemicelluloses. Technical lignins are only applied in novel materials to a rather limited extent, although bulk lignin utilization is a worldwide research object. Native lignins, which belong to the second or third most abundant biopolymers of terrestrial plants, are mostly used in the form of technical lignins from wood pulping processes; they are employed in low-performance sectors or simply burnt for the generation of energy. Technical lignins are available in huge quantities and have a large application potential, mainly in areas where their aromatic nature is of relevance. This review presents the state of the art of foamed lignin-based polymers (lignofoams) as high-performance insulation materials. In the focus of this presentation are the fundamental foaming principles and influential agents that have an improvement potential concerning the matrix interactions between technical lignins (including lignosulfonates) and a copolymer in foam composites. The different approaches for foam preparation are critically compared. In general, the reviewed papers disclose that the lignin part in foams should be less than 37%. There are significant difficulties to improve the properties of lignofoams, and thus intensive research is needed to find better formulations and new technologies.

Keywords: foaming; insulation; lignin; lignin utilization; lignofoams; lignosulfonate; technical lignin

References

  • Agarwal, K., Prasad, M., Sharma, R., Setua, D.K. (2014) Novel bio-degradable lignin reinforced NBR composites. Int. J. Energy Eng. 4:47–62.Google Scholar

  • Álvarez-Láinez, M., Rodríguez-Pérez, M.A., de Saja, J.A. (2014) Acoustic absorption coefficient of open-cell polyolefin-based foams. Mater. Lett. 121:26–30.CrossrefGoogle Scholar

  • Amen-Chen, C., Pakdel, H., Roy, C. (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour. Technol. 79:277–299.PubMedCrossrefGoogle Scholar

  • Asdrubali, F., D’Alessandro, F., Schiavoni, S. (2015) A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4:1–17.Google Scholar

  • Balakshin, M.Y., Capanema, E.A., Chang, H.-M. (2009) Recent advances in the isolation and analysis of lignins and lignin–carbohydrate complexes. In: Characterization of lignocellulosic materials. Ed. Hu, T.Q. Blackwell Publishing Ltd., Oxford. pp. 148–166.Google Scholar

  • Barron, B., Dunlap, J. (1974) Air frothed polyurethane foams. US3821130A.Google Scholar

  • Barzegari, M.R., Alemdar, A., Zhang, Y., Rodrigue, D. (2012) Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym. Compos. 33:353–361.CrossrefGoogle Scholar

  • Belgacem, M.N., Blayo, A., Gandini, A. (2003) Organosolv lignin as a filler in inks, varnishes and paints. Ind. Crops Prod. 18:145–153.CrossrefGoogle Scholar

  • Bernardini, J., Anguillesi, I., Coltelli, M.-B., Cinelli, P., Lazzeri, A. (2015) Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym. Int. 64:1235–1244.CrossrefGoogle Scholar

  • Bohnke, L., Beaujean, J., Albach, R., Li, J., Ling, S. (2014) Rigid polyurethane foams with high acoustic absorption. US20160046758A1.Google Scholar

  • Brook, M.A., Grande, J.B., Ganachaud, F. (2010) New synthetic strategies for structured silicones using B(C6F5)3. In: Silicon Polymers. Ed: Muzafarov, A.M. Springer, Berlin, Heidelberg. pp. 161–183.Google Scholar

  • Brown, R.C., Brown, T.R. Biorenewable Resources: Engineering New Products from Agriculture. John Wiley & Sons, Inc., New Jersey. 2014.Google Scholar

  • Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N. (2011) Kinetic study of the formation of lignin-based polyurethanes in bulk. Reactive Func. Polym. 71:863–869.CrossrefGoogle Scholar

  • Cateto, C.A., Barreiro, M.F., Ottati, C., Lopretti, M., Rodrigues, A.E., Belgacem, M.N. (2013) Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast. 50:81–95.Google Scholar

  • Chen, R., Kokta, B.V., Valade, J.L. (1979) Graft copolymerization of lignosulfonate and styrene. J. Appl. Polym. Sci. 24: 1609–1618.CrossrefGoogle Scholar

  • Chung, H., Washburn, N.R. (2012) Improved lignin polyurethane properties with Lewis acid treatment. ACS Appl. Mater. Interfaces 4:2840–2846.CrossrefPubMedGoogle Scholar

  • Cinelli, P., Anguillesi, I., Lazzeri, A. (2013) Green synthesis of flexible polyurethane foams from liquefied lignin. Europ. Polym. J. 49:1174–1184.CrossrefGoogle Scholar

  • Czaplicki, M., Kosal, D., Madaus, K. (2004) Two component (epoxy/amine) structural foam-in-place material. US20050020703A1.Google Scholar

  • Davis, K., Rover, M., Brown, R., Bai, X., Wen, Z., Jarboe, L. (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies 9:808.CrossrefGoogle Scholar

  • Del Saz-Orozco, B., Oliet, M., Alonso, M.V., Rojo, E., Rodríguez, F. (2012) Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach. Compos. Sci. Technol. 72:667–674.CrossrefGoogle Scholar

  • Dongre, P., Driscoll, M., Amidon, T., Bujanovic, B. (2015) Lignin-furfural based adhesives. Energies 8:7897–7914.CrossrefGoogle Scholar

  • Engelmann, W.H. (1978) Foam injection leaching process for fragmented ore. US4080419A.Google Scholar

  • Engelmann, G., Ganster, J. (2016) Lignin reinforcement in thermosets composites. In: Lignin in Polymer Composites. Eds. Faruk, O., Sain, M. William Andrew Publishing, Norwich, NY. pp. 119–151.Google Scholar

  • Feghali, E., Cantat, T. (2014) Unprecedented organocatalytic reduction of lignin model compounds to phenols and primary alcohols using hydrosilanes. Chem. Commun. (Camb) 50:862–5.PubMedCrossrefGoogle Scholar

  • Fengel, D., Wegener, G. Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, New York, 1984.Google Scholar

  • Fisher, A.B., Fong, S.S. (2014) Lignin biodegradation and industrial implications. AIMS Bioeng. 1:92–112.CrossrefGoogle Scholar

  • Frisch, K.C. (2006) History of science and technology of polymeric foams. J. Macromol. Sci. A: Chemistry 15:1089–1112.Google Scholar

  • Ghorbani, M., Liebner, F., Van Herwijnen, H.W.G., Pfungen, L., Krahofer, M., Budjav, E., Konnerth, J. (2016) Lignin phenol formaldehyde resoles: the impact of lignin type on adhesive properties. BioResources 11:6727–6741.Google Scholar

  • Ghorbani, M., Konnerth, J., Budjav, E., Silva, A., Zinovyev, G., van Herwijnen, H., Edler, M., Griesser, T., Liebner, F. (2017) Ammoxidized fenton-activated pine kraft lignin accelerates synthesis and curing of resole resins. J. Polym. 9:43.Google Scholar

  • Gribble, M.Y., Kennedy, J.G., White, D.P., Van Bellegem, P.C.J.M., Autenrieth, R.E. (2004) Process for applying polyurethane dispersion-based foam to article. US 20040109992A1.Google Scholar

  • Han, X., Shen, J., Huang, H., Tomasko, D.L., Lee, L.J. (2007) CO2 foaming based on polystyrene/poly(methyl methacrylate) blend and nanoclay. Polym. Eng. Sci. 47:103–111.CrossrefGoogle Scholar

  • Hingmann, R. (2017) Thermoplastic foams: an exciting story of versatile cellular materials for multifaceted applications and markets. SPE Foams 2017, Conference on Advances in Foam Materials & Technology. Bayreuth, Germany.Google Scholar

  • Hu, L.H., Zhou, Y.H., Zhang, M., Liu, R.J. (2012) Characterization and properties of a lignosulfonate-based phenolic foam. BioResources 7:554–564.Google Scholar

  • Huang, J., Zhang, L. (2002) Structure and properties of regenerated cellulose films coated with polyurethane-nitrolignin graft-IPNs coating. J. Appl. Polym. Sci. 86:1799–1806.CrossrefGoogle Scholar

  • Huo, S.P., Nie, M.C., Kong, Z.W., Wu, G.M., Chen, J. (2012) Crosslinking kinetics of the formation of lignin-aminated polyol-based polyurethane foam. J. Appl. Polym. Sci. 125:152–157.CrossrefGoogle Scholar

  • Hwa, C.C.L., McNeil, D.W. (1964) Method for leaching a polyurethane foam. US3125541A.Google Scholar

  • Ikem, V.O., Menner, A., Bismarck, A. (2010) High-porosity macroporous polymers synthesized from titania-particle-stabilized medium and high internal phase emulsions. Langmuir 26:8836–8841.CrossrefGoogle Scholar

  • Jeong, H., Park, J., Kim, S., Lee, J., Ahn, N. (2013) Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams. Fibers Polym. 14:1301–1310.CrossrefGoogle Scholar

  • Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J. (2016) Towards lignin-based functional materials in a sustainable world. Green Chem. 18:1175–1200.CrossrefGoogle Scholar

  • Kim, D.J., Kim, S.W., Kang, K.J., Seo, K.H. (2001) Foaming of aliphatic polyester using chemical blowing agent. J. Appl. Polym. Sci. 81:2443–2454.CrossrefGoogle Scholar

  • Kühnel, I., Podschun, J., Saake, B., Lehnen, R. (2015) Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung 69:531–538.Google Scholar

  • Kyoto Protocol to the United Nations Framework Convention on Climate Change, Kyoto (1997, in force 2005), Vol. 2303 United Nations, Treaty Series, p. 162.Google Scholar

  • Laurichesse, S., Avérous, L. (2014) Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39:1266–1290.CrossrefGoogle Scholar

  • Lee, S.T., Ramesh, N.S. Polymeric Foams: Mechanisms and Materials. CRC Press, New York, 2004.Google Scholar

  • Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G. (2005) Polymer nanocomposite foams. Compos. Sci. Technol. 65:2344–2363.CrossrefGoogle Scholar

  • Lee, S.T., Park, C.B., Ramesh, N.S. Polymeric Foams: Science and Technology. CRC Press, Taylor and Francis Group, New York, 2006.Google Scholar

  • Lee, K.-Y., Wong, L.L.C., Blaker, J.J., Hodgkinson, J.M., Bismarck, A. (2011) Bio-based macroporous polymer nanocomposites made by mechanical frothing of acrylated epoxidised soybean oil. Green Chem. 13:3117.CrossrefGoogle Scholar

  • Li, Y., Ragauskas, A.J. (2012) Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol. 32:210–224.CrossrefGoogle Scholar

  • Li, H., Zhang, Q., Gao, P., Wang, L.-L. (2015) Preparation and characterization of graft copolymer from dealkaline lignin and styrene. J. Appl. Polym. Sci. 132:41900.Google Scholar

  • Lisperguer, J., Núñez, C., Pérez-Guerrero, P. (2013) Structure and thermal properties of maleated lignin-recycled polystyrene composites. J. Chil. Chem. Soc. 58:1937–1940.CrossrefGoogle Scholar

  • Luo, X., Mohanty, A., Misra, M. (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind. Crops Prod. 47:13–19.CrossrefGoogle Scholar

  • Mahmood, N., Yuan, Z., Schmidt, J., Tymchyshyn, M., Xu, C. (2016) Hydrolytic liquefaction of hydrolysis lignin for the preparation of bio-based rigid polyurethane foam. Green Chem. 18:2385–2398.CrossrefGoogle Scholar

  • Mannella, G.A., Conoscenti, G., Carfì Pavia, F., La Carrubba, V., Brucato, V. (2015) Preparation of polymeric foams with a pore size gradient via thermally induced phase separation (TIPS). Mater. Lett. 160:31–33.CrossrefGoogle Scholar

  • Merle, J., Birot, M., Deleuze, H., Mitterer, C., Carré, H., Bouhtoury, F.C.-E. (2016a) New biobased foams from wood byproducts. Mater. Design 91:186–192.CrossrefGoogle Scholar

  • Merle, J., Trinsoutrot, P., Charrier-El Bouhtoury, F. (2016b) Optimization of the formulation for the synthesis of bio-based foams. Eur. Polym. J. 84:577–588.CrossrefGoogle Scholar

  • Montreal Protocol on Substances that Deplete the Ozone Layer, Montreal (1987, in force 1989), Vol. 1522 United Nations, Treaty Series, p. 3.Google Scholar

  • Mostafa, A., Abdolreza, O. (2015) Improving sound absorption of polyurethane foams by the incorporation of nano-particles. The 22th International Congress on Sound and Vibration, Florence, Italy.Google Scholar

  • Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A., Gandini, A. (2005) Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290:1009–1016.CrossrefGoogle Scholar

  • Negrão, D.R., Sain, M., Leão, A.L., Sameni, J., Jeng, R., de Jesus, J.P.F., Monteiro, R.T.R. (2015) Fragmentation of lignin from organosolv black liquor by white rot fungi. BioResources 10:1553–1573.Google Scholar

  • Obaid, N., Kortschot, M.T., Sain, M. (2016) Lignin-based foaming materials. In: Lignin in Polymer Composites. Eds. Faruk, O., Sain, M. William Andrew/Elsevier, Oxford, UK. pp. 217–232.Google Scholar

  • Ockenfels, H.-M., Uter, W., Lessmann, H., Schnuch, A., Geier, J. (2009) Patch testing with benzoyl peroxide: reaction profile and interpretation of positive patch test reactions. Contact Dermatitis 61:209–216.CrossrefPubMedGoogle Scholar

  • Opris, C., Cojocaru, B., Gheorghe, N., Tudorache, M., Coman, S.M., Parvulescu, V.I., Duraki, B., Krumeich, F., van Bokhoven, J.A. (2017) Lignin fragmentation onto multifunctional Fe3O4@Nb2O5@Co@Re catalysts: the role of the composition and deposition route of rhenium. ACS Catal. 7:3257–3267.CrossrefGoogle Scholar

  • Pan, X., Saddler, J.N. (2013) Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol. Biofuels 6:12.CrossrefPubMedGoogle Scholar

  • Pandey, M.P., Kim, C.S. (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34:29–41.CrossrefGoogle Scholar

  • Petchwattana, N., Covavisaruch, S. (2011) Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull. Mater. Des. 32:2844–2850.CrossrefGoogle Scholar

  • Phillips, R.B., Brown, W., Stannett, V. (1973) The graft copolymerization of styrene and lignin. III. Chain transfer reactions of lignin and lignin model compounds. J. Appl. Polym. Sci. 17:443–451.CrossrefGoogle Scholar

  • Rials, T.G., Glasser, W.G. (1986) Engineering plastics from lignin – XIII. Effect of lignin structure on polyurethane network formation. Holzforschung 40:353–360.CrossrefGoogle Scholar

  • Sanchez-Martin, J., Beltran-Heredia, J., Delgado-Regana, A., Rodriguez-Gonzales, M.A., Rubio-Alonso, F. (2013) Optimization of tannin rigid foam as adsorbents for wastewater treatment. Ind. Crops Prod. 49:507–514.CrossrefGoogle Scholar

  • Saraf, V.P., Glasser, W.G., Wilkes, G.L. (1985) Engineering plastics from lignin. VII. Structure property relationships of poly(butadiene glycol)-containing polyurethane networks. J. Appl. Polym. Sci. 30:3809–3823.CrossrefGoogle Scholar

  • Sauceau, M., Fages, J., Common, A., Nikitine, C., Rodier, E. (2011) New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 36:749–766.CrossrefGoogle Scholar

  • Schidrowitz, P., Goldsbrough, H.A. (1915) British patent No. 1,111.Google Scholar

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. (1984) Reporting physisorption data for gas-solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603–619.Google Scholar

  • Singh, S.N. Blowing Agents for Polyurethane Foams. Rapra Technology Ltd., online, 2001.Google Scholar

  • Štěpek, J., Daoust, H. (1983) Chemical and physical blowing agents. In: Additives for Plastics. Springer New York, New York, pp. 112–123.Google Scholar

  • Stevens, E.S., Klamczynski, A., Glenn, G.M. (2010) Starch-lignin foams. Express Polym. Lett. 4:311–320.CrossrefGoogle Scholar

  • Szabó, G., Romhányi, V., Kun, D., Renner, K., Pukánszky, B. (2017) Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain. Chem. Eng. 5:410–419.CrossrefGoogle Scholar

  • Szczurek, A., Fierro, V., Pizzi, A., Stauber, M., Celzard, A. (2014) A new method for preparing tannin-based foams. Ind. Crops Prod. 54:40–53.CrossrefGoogle Scholar

  • Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R. (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2:1072–1092.CrossrefGoogle Scholar

  • Tondi, G., Pizzi, A. (2009) Tannin-based rigid foams: characterization and modification. Ind. Crops Prod. 29:356–363.CrossrefGoogle Scholar

  • Tondi, G., Link, M., Kolbitsch, C., Gavino, J., Luckeneder, P., Petutschnigg, A., Herchl, R., Van Doorslaer, C. (2016) Lignin-based foams: production process and characterization. BioResources 11:2972–2986.Google Scholar

  • Victor, P.A., Gonçalves, S.B., Machado, F. (2018) Styrene/lignin-based polymeric composites obtained through a sequential mass-suspension polymerization process. J. Polym. Environ. 26:1755–1774.CrossrefGoogle Scholar

  • Vishtal, A., Kraslawski, A. (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568.Google Scholar

  • Wong, J.C.H., Tervoort, E., Busato, S., Gonzenbach, U.T., Studart, A.R., Ermanni, P., Gauckler, L.J. (2009) Macroporous polymers from particle-stabilized foams. J. Mater. Chem. 19:5129.CrossrefGoogle Scholar

  • Yoshida, H., Morck, R., Kringstad, K.P., Hatakeyama, H. (1987) Kraft lignin in polyurethanes I. Mechanical properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI System. J. Appl. Polym. Sci. 34:1187–1198.CrossrefGoogle Scholar

  • Yoshida, H., Morck, R., Kringstad, K.P., Hatakeyama, H. (1990) Kraft lignin in polyurethanes II. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin-polyether triol-polymeric MDI system. J. Appl. Polym. Sci. 40:1819–1832.CrossrefGoogle Scholar

  • Zhai, W., Leung, S.N., Wang, L., Naguib, H.E., Park, C.B. (2010) Preparation of microcellular poly(ethylene-co-octene) rubber foam with supercritical carbon dioxide. J. Appl. Polym. Sci. 116:1997–2004.Google Scholar

  • Zhang, J., Fleury, E., Brook, M.A. (2015) Foamed lignin–silicone bio-composites by extrusion and then compression molding. Green Chem. 17:4647–4656.CrossrefGoogle Scholar

  • Zinovyev, G., Sumerskii, I., Korntner, P., Sulaeva, I., Rosenau, T., Potthast, A. (2017) Molar mass-dependent profiles of functional groups and carbohydrates in kraft lignin. J. Wood Chem. Technol. 37:171–183.CrossrefGoogle Scholar

About the article

aDeceased


Received: 2018-05-13

Accepted: 2018-10-26

Published Online: 2018-12-08

Published in Print: 2018-12-19


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Financial support to WOOD Kplus was provided by the Austrian government, the provinces of lower Austria, upper Austria, and Carinthia as well as by Lenzing AG. We also express our gratitude to the University of Natural Resources and Life Sciences, Vienna (BOKU University), the Johannes Kepler University, Linz, and Lenzing AG for their in-kind contributions.

Employment or leadership: None declared.

Honorarium: None declared.

Conflict of interest statement: No conflicts of interest declared.


Citation Information: Holzforschung, Volume 73, Issue 1, Pages 117–130, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0111.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in