Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 10

Issues

Variation of surface and bonding properties among four wood species induced by a high voltage electrostatic field (HVEF)

Qian He
  • College of Materials Science and Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing, Jiangsu 210037, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tianyi ZhanORCID iD: https://orcid.org/0000-0002-2120-6062 / Haiyang Zhang
  • College of Materials Science and Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing, Jiangsu 210037, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zehui Ju
  • College of Materials Science and Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing, Jiangsu 210037, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lu Hong
  • College of Materials Science and Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing, Jiangsu 210037, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicolas Brosse
  • LERMAB, Faculty of Science and Technology, University of Lorraine, Nancy, Vandoeuvre-lès-Nancy 54506, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaoning Lu
  • Corresponding author
  • College of Materials Science and Engineering, Nanjing Forestry University, 159# Longpan Road, Nanjing, Jiangsu 210037, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-22 | DOI: https://doi.org/10.1515/hf-2018-0190

Abstract

A high voltage electrostatic field (HVEF) was applied to enhance the bonding performance of wood composites prepared with phenol-formaldehyde (PF) adhesive and different wood species and radial cut combinations. Four wood species including Masson pine (Pinus massoniana), Chinese fir (Cunninghamia lanceolata), poplar (Populus tomentosa) and ayous (Triplochiton scleroxylon) were studied. The results of HVEF-treatment turn out to be species-dependent, and are related to the anatomical and chemical properties of wood. It was demonstrated by a statistical approach that the lignin content is the most significant parameter with a good correlation coefficient (R2 > 0.8). High lignin content leads to high free radical concentration at the wood surface and the HVEF enhanced the adhesive penetration depth, the maximal density and the bonding strength (Bst) at the interphase. On the contrary, high extract contents and large lumina diameters negatively impacted the surface modification by HVEF. The magnitude of the effects was in the following order: ayous < poplar < Masson pine < Chinese fir.

Keywords: adhesive penetration; anatomical structure; ayous; bonding properties; chemical component; Chinese fir; poplar; correlation between gluing parameters; density determination by X-ray densitometry (XRD); electron spin resonance (ESR) spectroscopy; high voltage electrostatic field (HVEF); Masson pine

References

  • Ammann, S., Schlegel, S., Beyer, M., Aehlig, K., Lehmann, M., Jung, H., Niemz, P. (2016) Quality assessment of glued ash wood for construction engineering. Eur. J. Wood Wood Prod. 74:67–74.Web of ScienceCrossrefGoogle Scholar

  • Felby, C., Thygesen, L.G., Sanadi, A., Barsberg, S. (2004) Native lignin for bonding of fibre boards – evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind. Crops Prod. 20:181–189.CrossrefGoogle Scholar

  • Follrich, J., Stöckel, F., Konnerth, J. (2010) Macro- and micromechanical characterization of wood-adhesive bonds exposed to alternating climate conditions. Holzforschung 64:705–711.Web of ScienceGoogle Scholar

  • Gavrilovicgrmusa, I., Dunky, M., Miljkovic, J., Djiporovicmomcilovic, M. (2012) Influence of the viscosity of UF resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints. Holzforschung 66:849–856.Web of ScienceGoogle Scholar

  • Hashim, R., How, L.S., Othman, S., Yamamoto, K. (2001) Effect of extractive removal on dimensional stability and bonding properties of particleboard made from hybrid of acacia. J. Inst. Wood Sci. 15:261–266.Google Scholar

  • He, G., Yan, N. (2005) Effect of wood species and molecular weight of phenolic resins on curing behavior and bonding development. Holzforschung 22:26–640.Google Scholar

  • He, Q., Zhan, T., Zhang, H., Ju, Z., Dai, C., Lu, X. (2018) The effect of high voltage electrostatic field (HVEF) treatment on bonding interphase characteristics among different wood sections of Masson pine (Pinus massoniana Lamb.). Holzforschung 72:557–565.CrossrefWeb of ScienceGoogle Scholar

  • He, Q., Zhan, T., Ju, Z., Zhang, H., Hong, L., Brosse, N., Lu, X. (2019) Influence of high voltage electrostatic field (HVEF) on bonding characteristics of Masson (Pinus massoniana Lamb.) veneer composites. Eur. J. Wood Wood Prod. 77:105–114.Web of ScienceCrossrefGoogle Scholar

  • Hiziroglu, S., Zhong, Z.W., Ong, W.K. (2014) Evaluating of bonding strength of pine, oak and nyatoh wood species related to their surface roughness. Measurement 49:397–400.Web of ScienceCrossrefGoogle Scholar

  • Hon, D.N.S., Feist, W.C. (1981) Free radical formation in wood: the role of water. Wood Sci. 14:41–48.Google Scholar

  • Ju, Z., Lin, Y., He, Q., Hong, L., Zhang, H., Zhan, T., Lu, X. (2018) Simulation of plywood sound insulation based on wood anatomical characteristic. J. For. Eng. 3:42–47.Google Scholar

  • Konnerth, J. (2014) Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by nanoindentation. Holzforschung 68:707–712.Web of ScienceGoogle Scholar

  • Konnerth, J., Harper, D., Lee, S.H., Rials, T.G., Gindl, W. (2008) Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung 62:91–98.Web of ScienceGoogle Scholar

  • Lo, K.S. (2011) Effect of extraction solvent on mechanical properties of particleboard produced from cultivated acacia hybrid. J. Indian Acad. Wood Sci. 8:46–49.CrossrefGoogle Scholar

  • Lu, X., He, Q., Yao, Y., Zhang, H., Lu, K., Ju, Z. (2016) The study on the natural frequency of two types of international common wood for table tennis racket core and its effect of factors. J. For. Eng. 1:16–20.Google Scholar

  • Mirzaei, B., Sinha, A., Nairn, J.A. (2016) Assessing the role of adhesives in durability of laminated veneer lumber (LVL) by fracture mechanics. Holzforschung 70: 763–771.Web of ScienceGoogle Scholar

  • Modzel, G., Kamke, F.A., Carlo, F.D. (2011) Comparative analysis of a wood: adhesive bondline. Wood Sci. Technol. 45:147–158.CrossrefWeb of ScienceGoogle Scholar

  • Murata, K., Watanabe, Y., Nakano, T. (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Nguyen, T.T., Ji, X., Nguyen, T.H.V., Guo, M. (2017) Wettability modification of heat-treated wood (HTW) via cold atmospheric-pressure nitrogen plasma jet (APPJ). Holzforschung 71: 543–560.Web of ScienceGoogle Scholar

  • Poletto, M., Zattera, A.J., Forte, M.M.C., Santana, R.M.C. (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour. Technol. 109:148–153.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Rohumaa, A. (2014) The influence of felling season and log-soaking temperature on the wetting and phenol formaldehyde adhesive bonding characteristics of birch veneer. Holzforschung 68:965–970.Web of ScienceGoogle Scholar

  • Sandermann, W., Augustin, H. (1963) Chemische Untersuchungen über die thermische Zersetzung von Holz – Zweite Mitteilung: Untersuchungen mit Hilfe der Differential-Thermo-Analyse [Chemical investigations on the thermal decomposition of wood – Part III: Chemical investigation on the course of decomposition]. Holz Roh- und Werkst. 21:305–315.Google Scholar

  • Uehara, T., Sakata, I. (1990) Effect of corona discharge treatment on cellulose prepared from beech wood. J. Appl. Polym. Sci. 41:1695–1706.CrossrefGoogle Scholar

  • Zhan, T., Jiang, J., Peng, H., Lu, J. (2016a) Dynamic viscoelastic properties of Chinese fir (Cunninghamia lanceolata) during moisture desorption processes. Holzforschung 70:547–555.Web of ScienceCrossrefGoogle Scholar

  • Zhan, T., Lu, J., Jiang, J., Peng, H., Li, A., Chang, J. (2016b) Viscoelastic properties of the Chinese fir (Cunninghamia lanceolata) during moisture sorption processes determined by harmonic tests. Materials 9:1020.CrossrefWeb of ScienceGoogle Scholar

  • Zhan, T., Jiang, J., Lu, J., Zhang, Y., Chang, J. (2018a) Influence of hygrothermal condition on dynamic viscoelasticity of Chinese fir (Cunninghamia lanceolata). Part 1: moisture adsorption. Holzforschung 72:567–578.CrossrefWeb of ScienceGoogle Scholar

  • Zhan, T., Jiang, J., Lu, J., Zhang, Y., Chang, J. (2018b) Influence of hygrothermal condition on dynamic viscoelasticity of Chinese fir (Cunninghamia lanceolata). Part 2: moisture desorption. Holzforschung 72:579–588.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, H., Pizzi, A., Lu, X., Wang, Z. (2017a) Study of the End-grain butt joints obtained by friction welding of moso bamboo. Bioresources 12:6446–6457.Web of ScienceGoogle Scholar

  • Zhang, H., Pizzi, A., Zhou, X., Lu, X., Wang, Z. (2017b) The study of linear vibrational welding of moso bamboo. J. Adhes. Sci. Technol. 32:1–10.Web of ScienceGoogle Scholar

About the article

Received: 2018-08-29

Accepted: 2019-04-09

Published Online: 2019-05-22

Published in Print: 2019-08-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors are grateful for funding support by the National Key R&D Program of China (2017YFC0703501). The study was financed by the Doctorate Fellowship Foundation of Nanjing Forestry University, the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0962), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the National First-class Disciplines. LERMAB is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12-LABXARBRE-01). QH would like to gratefully acknowledge the financial support from the China Scholarship Council (CSC).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 10, Pages 957–965, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0190.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in