Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 73, Issue 12


Water vapour sorption properties of thermally modified and pressurised hot-water-extracted wood powder

Kristiina Lillqvist
  • Corresponding author
  • Department of Architecture and Civil Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
  • Faculty of Technology, Lahti University of Applied Sciences, Mukkulankatu 19, 15101 Lahti, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susanna Källbom
  • Department of Architecture and Civil Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Altgen
  • Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiina Belt
  • Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lauri Rautkari
  • Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-16 | DOI: https://doi.org/10.1515/hf-2018-0301


The objective of the study was to investigate the water vapour sorption behaviour of thermally modified (TM) wood powder, e.g. ground wood prepared from waste streams of TM solid wood, and wood powder that was extracted in pressurised hot water. Solid spruce wood was TM in steam conditions (210°C for 3 h), milled and hot-water-extracted (HWE) at elevated pressure (140°C for 1 h). The results evidence that the hot-water extraction reduced the water sorption and the accessible hydroxyl group concentration by the removal of amorphous carbohydrates. In contrast, the enhanced cross-linking of the cell wall matrix and the annealing of amorphous matrix polymers during thermal modification reduced the sorption behaviour of wood additionally, without further reducing the hydroxyl accessibility. These additional effects of thermal modification were at least partially cancelled by hot-water extraction. The results bring novel insights into the mechanisms that reduce the water vapour sorption of wood by compositional and structural changes induced by heating.

Keywords: carbohydrate analysis; deuterium exchange; dynamic vapour sorption; hot-water extraction; thermal modification


  • Alén, R., Kotilainen, R., Zaman, A. (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 degrees C. Wood Sci. Technol. 36:163–171.CrossrefGoogle Scholar

  • Altgen, M., Hofmann, T., Militz, H. (2016) Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood. Wood Sci. Technol. 50:1181–1195.Web of ScienceCrossrefGoogle Scholar

  • Altgen, M., Uimonen, T., Rautkari, L. (2018a) The effect of de- and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static load. Polym. Degrad. Stab. 147:197–205.CrossrefGoogle Scholar

  • Altgen, M., Willems, W., Hosseinpourpia, R., Rautkari, L. (2018b) Hydroxyl accessibility and dimensional changes of Scots pine sapwood affected by alterations in the cell wall ultrastructure during heat-treatment. Polym. Degrad. Stab. 152:244–252.CrossrefGoogle Scholar

  • Andersson, S., Serimaa, R., Vaananen, T., Paakkari, T., Jämsä, S., Viitaniemi, P. (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59:422–427.CrossrefGoogle Scholar

  • Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P. (2011) Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym. Degrad. Stab. 96:818–822.CrossrefGoogle Scholar

  • Beck, G., Strohbusch, S., Larnøy, E., Militz, H., Hill, C. (2017) Accessibility of hydroxyl groups in anhydride modified wood as measured by deuterium exchange and saponification. Holzforschung 72:17–23.Web of ScienceCrossrefGoogle Scholar

  • Boonstra, M.J., Tjeerdsma, B. (2006) Chemical analysis of heat treated softwoods. Holz Roh. Werkst. 64:204–211.CrossrefGoogle Scholar

  • Borrega, M., Kärenlampi, P. (2010) Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. Eur. J. Wood Wood Prod. 68:233–235.CrossrefWeb of ScienceGoogle Scholar

  • Borrega, M., Nieminen, K., Sixta, H. (2011) Effects of hot water extraction in a batch reactor on the delignification of birch wood. BioResources 6:1890–1903.Google Scholar

  • Brosse, N., El Hage, R., Chaouch, M., Pétrissans, M., Dumarçay, S., Gérardin, P. (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym. Degrad. Stab. 95:1721–1726.CrossrefGoogle Scholar

  • Butylina, S., Martikka, O., Kärki, T. (2011) Properties of wood fibre-polypropylene composites: effect of wood fibre source. Appl. Compos. Mater. 18:101–111.Web of ScienceCrossrefGoogle Scholar

  • Čermák, P., Rautkari, L., Horáçek, P., Saake, B., Rademacher, P., Sablík, P. (2015) Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources 10:3242–3253.Web of ScienceGoogle Scholar

  • Duchesne, I., Hult, E., Molin, U., Daniel, G., Iversen, T., Lennholm, H. (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111.CrossrefGoogle Scholar

  • Endo, K., Obataya, E., Zeniya, N., Matsuo, M. (2016) Effects of heating humidity on the physical properties of hydrothermally treated spruce wood. Wood Sci. Technol. 50:1161–1179.Web of ScienceCrossrefGoogle Scholar

  • Engelund, E.T., Thygesen, L.E., Svensson, S., Hill, C.A.S. (2013) A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 47:141–161.Web of ScienceCrossrefGoogle Scholar

  • Fahlén, J., Salmén, L. (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J. Mater. Sci. 38:119–126.CrossrefGoogle Scholar

  • Garrote, G., Domínguez, H., Parajó, J.C. (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh. Werkst. 57:191–202.CrossrefGoogle Scholar

  • Glass, S.V., Boardman, C.R., Zelinka, S.L. (2017) Short hold times in dynamic vapour sorption measurements mischaracterize the equilibrium moisture content of wood. Wood Sci. Technol. 51:243–260.CrossrefGoogle Scholar

  • Glass, S.V., Boardman, C.R., Thyrbing, E.E., Zelinka, S.L. (2018) Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Sci. Technol. 52: 909–927.CrossrefWeb of ScienceGoogle Scholar

  • Hakkou, M., Pétrissans, M., Zoulalian, A., Gérardin, P. (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym. Degrad. Stab. 89:1–5.CrossrefGoogle Scholar

  • Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd., Chichester, 2006.Google Scholar

  • Hill, C.A.S., Ramsay, J., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B. (2012) The water vapour sorption properties of thermally modified and densified wood. J. Mater. Sci. 47:3191–3197.CrossrefWeb of ScienceGoogle Scholar

  • Himmel, S., Mai, C. (2015) Effects of acetylation and formalization on the dynamic vapor sorption behavior of wood. Holzforschung 69:633–643.Web of ScienceCrossrefGoogle Scholar

  • Hosseinaei, O., Wang, S., Enayati, A.A., Rials, T.G. (2012) Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Compos. Part. Appl. Sci. Manuf. 43:686–694.CrossrefWeb of ScienceGoogle Scholar

  • Källbom, S., Wålinder, M., Segerholm, K., Jones, D. (2015) Surface energy characterization of thermally modified spruce using inverse gas chromatography under cycling humidity conditions. Wood Fiber Sci. 47:410–420.Google Scholar

  • Källbom, S., Rautkari, L., Wålinder, M., Johansson, L.-S., Campbell, B.K., Segerholm, C., Jones, D. (2016) Water vapour sorption characteristics and surface chemical composition of thermally modified spruce. Int. Wood Prod. J. 7:116–123.CrossrefWeb of ScienceGoogle Scholar

  • Kuka, E., Cirule, D., Kajaks, J., Andersone, I., Andersons, B. (2016) Wood plastic composites made with thermally modified birch wood residues. Int. Wood Prod. J. 7:225–230.CrossrefWeb of ScienceGoogle Scholar

  • Lindh, E.L., Bergenstråhle-Wohlert, M., Terenzi, C., Salmén, L., Furó, I. (2016) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr. Res. 434:136–142.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Luo, X.L., Zhu, J.Y., Gleisner, R., Zhan, H.Y. (2011) Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose 18:1055–1062.CrossrefWeb of ScienceGoogle Scholar

  • Nuopponen, M., Vuorinen, T., Jämsä, S., Viitaniemi, P. (2005) Thermal modifications in softwood studied by FT-IR and UV Resonance Raman spectroscopies. J. Wood Chem. Technol. 24:13–26.CrossrefGoogle Scholar

  • Ozdemir, F., Ayrilmis, N., Kaymakci, A., Kwon, J.H. (2014) Improving dimensional stability of injection molded wood plastic composites using cold and hot water extraction methods. Maderas-Cienc. Tecnol. 16:365–372.Web of ScienceGoogle Scholar

  • Pelaez-Samaniego, M.R., Yadama, V., Lowell, E., Amidon, T.E., Chaffee, T.L. (2012) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung 67:193.Web of ScienceGoogle Scholar

  • Pönni, R., Rautkari, L., Hill, C.A.S., Vuorinen, T. (2014) Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapour. Cellulose 21:2117–1226.Google Scholar

  • Popescu, C.-M., Hill, C.A.S. (2013) The water vapour adsorption–desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym. Degrad. Stab. 98:1804–1813.CrossrefGoogle Scholar

  • Rautkari, L., Hill, C.A.S., Curling, S., Jalaludin, Z., Ormondroyd, G. (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 48:6352–6356.Web of ScienceCrossrefGoogle Scholar

  • Salmén, L. (2004) Micromechanical understanding of the cell-wall structure. C. R. Biol. 327:873–880.PubMedCrossrefGoogle Scholar

  • Segerholm, K., Vellekoop, S., Wålinder, M. (2012) Process- related mechanical degradation of the wood component in high-wood-content wood-plastic composites. Wood Fiber. Sci. 44:145–154.Google Scholar

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2012) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618, National Renewable Energy Laboratory (NREL), USA.Google Scholar

  • Suchy, M., Virtanen, J., Kontturi, E., Vuorinen, T. (2010) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Taniguchi, T., Harada, H., Nakato, K. (1978) Determination of water adsorption sites in wood by a hydrogen-deuterium exchange. Nature 272:230–231.CrossrefGoogle Scholar

  • Thybring, E.E., Thygesen, L.G., Burgert, I. (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24: 2375–2384.CrossrefWeb of ScienceGoogle Scholar

  • Thybring, E.E., Kymäläinen, M., Rautkari, L. (2018) Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Sci. Technol. 52: 297–329.CrossrefWeb of ScienceGoogle Scholar

  • Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh. Werkst. 56:149–153.CrossrefGoogle Scholar

  • Viitaniemi, P., Jämsä, S., Viitanen, H. (1997) Method for improving biodegradation resistance and dimensional stability of cellulosic products. Patent WO 01/53812 A1.Google Scholar

  • Wentzel, M., Altgen, M., Militz, H. (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems. Wood Sci. Technol. 52:889–907.CrossrefWeb of ScienceGoogle Scholar

  • Willems, W. (2018) Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Sci. Technol. 52:777–791.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-12-17

Accepted: 2019-06-19

Published Online: 2019-07-16

Published in Print: 2019-11-26

Funding Source: Swedish Research Council FORMAS

Award identifier / Grant number: 2014-172

This work was supported by the Swedish Research Council FORMAS, (funder Id: http://dx.doi.org/10.13039/501100001862) within the EnWoBio project (2014-172).

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 73, Issue 12, Pages 1059–1068, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0301.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in