Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 12

Issues

Artificially aged spruce and beech wood surfaces reactivated using FE-DBD atmospheric plasma

Jure Žigon
  • Corresponding author
  • Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marko Petrič
  • Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Dahle
  • Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-25 | DOI: https://doi.org/10.1515/hf-2019-0005

Abstract

Although weathering is usually carried out in outdoor conditions, even ageing in indoor conditions can cause significant changes to wood surfaces. We found these to notably impact wetting and coatability of surfaces of common beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.] wood. These effects were well overcome and the surfaces reactivated using a novel kind of a plasma device. On both kinds of wood, ageing caused significant changes in their colour, opening of pits and cell wall destruction. Infrared spectra indicated a significant decrease of aromatic lignin and production of non-conjugated carbonyl groups. Surface free energies and spreading kinetics varied much upon this kind of ageing. In beech, pull-off strengths for a commercial waterborne wood coating slightly decreased for longer exposure times. For the reactivation of wood surfaces, we employed a novel approach using a floating electrode dielectric barrier discharge (FE-DBD) plasma, which had not been done on wood before. Similar to other plasma techniques, the surface free energy (SFE) increased after treatment. On beech wood, the plasma treatment (PT) led to higher pull-off strengths of the waterborne coating. On spruce wood, the coating mostly showed cohesive failures after ageing, and thus the PTs showed less improvements.

Keywords: beech; coatings; floating electrode dielectric barrier discharge; plasma; spruce; wettability; wood

References

  • Altgen, D., Avramidis, G., Viöl, W., Mai, C. (2016) The effect of air plasma treatment at atmospheric pressure on thermally modified wood surfaces. Wood Sci. Technol. 50:1227–1241.CrossrefGoogle Scholar

  • Asandulesa, M., Topala, I., Dumitrascu, N. (2010) Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung 64:223–227.Google Scholar

  • Ayadi, N., Lejeune, F., Charrier, F., Charrier, B., Merlin, A. (2003) Color stability of heat-treated wood during artificial weathering. Holz Roh- Werkst. 61:221–226.CrossrefGoogle Scholar

  • Bekeschus, S., Lin, A., Fridman, A., Wende, K., Weltmann, K.-D., Miller, V. (2018) A comparison of floating-electrode DBD and kINPen jet: plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions. Plasma Chem. Plasma Process. 38:12.Google Scholar

  • Borgin, K. (1970) The use of the scanning electron microscope for the study of weathered wood. J. Microsc. (Oxford, UK) 92:47–55.CrossrefGoogle Scholar

  • Chang, H.-T., Chang, S.-T. (2001) Correlation between softwood discoloration induced by accelerated lightfastness testing and by indoor exposure. Polym. Degrad. Stab. 72:361–365.CrossrefGoogle Scholar

  • Chang, T.-C., Chang, H.-T., Wu, C.-L., Chang, S.-T. (2010a) Influences of extractives on the photodegradation of wood. Polym. Degrad. Stabil. 95:516–521.CrossrefGoogle Scholar

  • Chang, T.-C., Chang, H.-T., Wu, C.-L., Lin, H.-Y., Chang, S.-T. (2010b) Stabilizing effect of extractives on the photooxidation of Acacia confusa wood. Polym. Degrad. Stabil. 95:1518–1522.CrossrefGoogle Scholar

  • Chen, M., Zhang, R., Tang, L., Zhou, X., Li, Y., Yang, X. (2016) Effect of plasma processing rate in poplar veneer surface and its application in plywood. BioResources 11:1571–1584.Google Scholar

  • Christiansen, A.W. (1994) Effect of overdrying of yellow-poplar veneer on physical properties and bonding. Holz Roh- Werkst. 52:139–149.CrossrefGoogle Scholar

  • Cogulet, A., Blanchet, P., Landry, V. (2016) Wood degradation under UV irradiation: a lignin characterization. J. Photochem. Photobiol. B 158:184–191.CrossrefPubMedGoogle Scholar

  • Cogulet, A., Blanchet, P., Landry, V. (2018) The multifactorial aspect of wood weathering: a review based on a holistic approach of wood degradation protected by clear coating. Bioresources 13:2116–2138.Google Scholar

  • Derbyshire, H., Miller, E.R. (1981) The photodegradation of wood during solar irradiation. Part I: Effects on the structural integrity of thin wood strips. Holz Roh- Werkst. 39:341–350.CrossrefGoogle Scholar

  • Dineff, P., Gospodinova, D., Ivanov, I. (2017) Efficiency assessment of plasma-aided porous media surface finishing. Adv. Sci. Technol. Eng. Syst. J. 2:242–251.CrossrefGoogle Scholar

  • Dobrynin, D., Fridman, G., Friedman, G., Fridman, A. (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 11:26.Google Scholar

  • EN ISO 11341 (2004) Paints and varnishes – artificial weathering and exposure to artificial radiation – exposure to filtered xenon-arc radiation. European Committee for Standardisation, Brussels, Belgium.Google Scholar

  • EN ISO 4246. (2016) Paints and varnishes – pull-off test for adhesion. European Committee for Standardisation, Brussels, Belgium.Google Scholar

  • Evans, P.D., Michell, A.J., Schmalzl, K.J. (1992) Studies of the degradation and protection of wood surfaces. Wood Sci. Technol. 26:151–163.Google Scholar

  • Evans, P.D., Urban, K., Chowdhury, M.J.A. (2008) Surface checking of wood is increased by photodegradation caused by ultraviolet and visible light. Wood Sci. Technol. 42:251–265.CrossrefGoogle Scholar

  • Fridman, G., Peddinghaus, M., Ayan, H., Fridman, A., Balasubramanian, M., Gutsol, A., Brooks, A., Friedman, G. (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process. 26:425–442.CrossrefGoogle Scholar

  • Fridman, G., Shereshevsky, A., Jost, M.M., Brooks, A.D., Fridman, A., Gutsol, A., Vasilets, V., Friedman, G. (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem. Plasma Process. 27:163–176.CrossrefGoogle Scholar

  • Gardner, D.J., Generalla, N.C., Gunnells, D.W., Wolcott, M.P. (1991) Dynamic wettability of wood. Langmuir 7:2498–2502.CrossrefGoogle Scholar

  • Gascón-Garrido, P., Mainusch, N., Militz, H., Viöl, W., Mai, C. (2016) Effects of copper-deposition on weathering properties of wood surfaces. Appl. Surf. Sci. 366:112–119.CrossrefGoogle Scholar

  • Gascón-Garrido, P., Mainusch, N., Militz, H., Viöl, W., Mai, C. (2017) Copper and aluminium deposition by cold-plasma spray on wood surfaces: effects on natural weathering behaviour. Eur. J. Wood Prod. 75:315–324.CrossrefGoogle Scholar

  • Geffertová, J., Geffert, A., Výbohová, E. (2018) The effect of UV irradiation on the colour change of the spruce wood. Acta Facultatis Xylologiae Zvolen 60:41–50.Google Scholar

  • George, B., Suttie, E., Melin, A., Deglise, X. (2005) Photodegradation and photostabilisation of wood – the state of the art. Polym. Degrad. Stab. 88:268–274.CrossrefGoogle Scholar

  • Gindl, M., Sinn, G., Gindl, W., Reiterer, A., Tschegg, S. (2001) A comparison of different methods to calculate the surface free energy of wood using CA measurements. Colloids Surf. A 181:279–287.CrossrefGoogle Scholar

  • Gindl, M., Reiterer, A., Sinn, G., Stanzl-Tschegg, S.E. (2004) Effects of surface ageing on wettability, surface chemistry, and adhesion of wood. Holz Roh- Werkst. 62:273–280.CrossrefGoogle Scholar

  • Hardy, J.-M., Levasseur, O., Vlad, M., Stafford, L., Riedl, B. (2015) Surface free radicals detection using molecular scavenging method on black spruce wood treated with cold, atmospheric pressure plasmas. Appl. Surf. Sci. 359:137–142.CrossrefGoogle Scholar

  • Hon, D.N.-S., Chang, S.-T. (1984) Surface degradation of wood by ultraviolet light. J. Polym. Sci. Part A-1: Polym. Chem. 22:2227–2241.Google Scholar

  • Hünnekens, B., Peters, F., Avramidis, G., Krause, A., Militz, H., Viöl, W. (2016) Plasma treatment of wood-polymer composites: a comparison of three different discharge types and their effect on surface properties. J. Appl. Polym. Sci. 133:43376.Google Scholar

  • Hünnekens, B., Avramidis, G., Ohms, G., Krause, A., Viöl, W. (2018) Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC). Appl. Surf. Sci. 441:564–574.CrossrefGoogle Scholar

  • Jankowska, A., Kozakiewicz, P. (2016) Evaluation of wood resistance to artificial weathering factors using compressive properties. Drvna Ind. 67:3–8.CrossrefGoogle Scholar

  • Kalnins, M.A., Feist, W.C. (1993) Increase in wettability of wood with weathering. Forest Prod. J. 43:55–57.Google Scholar

  • Kataoka, Y., Kiguchi, M., Williams, R.S., Evans, P.D. (2007) Violet light causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61:23–27.CrossrefGoogle Scholar

  • Král, P., Ráhel, J., Stupavská, M., Šrajer, J., Klímek, P., Mishra, K.P., Wimmer, R. (2015) XPS depth profile of plasma-activated surface of beech wood (Fagus sylvatica) and its impact on polyvinyl acetate tensile shear bond strength. Wood Sci. Technol. 49:319–330.CrossrefGoogle Scholar

  • Kránitz, K., Sonderegger, W., Bues, C.-T., Niemz, P. (2016) Effects of aging on wood: a literature review. Wood Sci. Technol. 50:7–22.CrossrefGoogle Scholar

  • Kúdela, J., Kubovský, I. (2016) Accelerated-ageing-induced photo-degradation of beech wood surface treated with selected coating materials. Acta Facultatis Xylologiae Zvolen 58:27–36.Google Scholar

  • Liston, E.M., Martinu, L., Wertheimer, M.R. (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhes. Sci. Technol. 7:1091–1127.CrossrefGoogle Scholar

  • Liu, X.Y., Timar, M.C., Varodi, A.M., Yi, S.L. (2016) Effect of ageing on the color and surface chemistry of paulownia wood (P. elongata) from fast growing crops. Bioresources 11:9400–9420.Google Scholar

  • Liu, W., Ma, C., Li, Z., Wang, T., Tian, J. (2017) Generation of atmospheric-pressure homogeneous dielectric barrier discharge in air. Europhys. Lett. 118:45001.CrossrefGoogle Scholar

  • McGreer, M. Weathering Testing Guidebook. Atlas Electric Devices Company, Chicago, IL, USA, 2001. ISBN: 9780971032200.Google Scholar

  • Miklečić, J., Jirouš-Rajković, V., Čmarec, S. (2008) Photoresistance of heat treated wood in interior use. In: Proceedings of the 19th International Scientific Conference Wood is Good: Properties, Technology, Valorisation, Application. Ed. Grbac, I. Faculty of Forestry, University of Zagreb. pp. 137–143.Google Scholar

  • Miklečić, J., Jirouš-Rajković, V., Antonović, A., Španić, N. (2011) Discolouration of thermally modified wood during simulated indoor sunlight exposure. Bioresources 6:434–446.Google Scholar

  • Miklečić, J., Kaša, A., Jirouš-Rajković, V. (2012) Colour changes of modified oak wood in indoor environment. Eur. J. Wood Prod. 70:385–387.CrossrefGoogle Scholar

  • Nejad, M., Cooper, P. (2011) Exterior wood coatings. Part-2: modeling correlation between coating properties and their weathering performance. J. Coat. Technol. Res. 8:459–467.CrossrefGoogle Scholar

  • Nguyen, T., Johns, W.E. (1979) The effects of aging and extraction on the surface free energy of Douglas fir and redwood. Wood Sci. Technol. 13:29–40.CrossrefGoogle Scholar

  • Nguyen, T., Chen, W., Cao, Y., Wang, X., Shi, S., Chen, M., Zhou, X., Nguyen, Q. (2018) Improving bonding strength of oven-dried poplar veneers using atmospheric cold plasma treatment. BioResources 13:1843–1851.Google Scholar

  • Novák, I., Sedliačik, J., Gajtanska, M., Schmidtová, J., Popelka, A., Bekhta, P., Krystofiak, T., Proszyk, S., Žigo, O. (2016) Effect of barrier plasma pre-treatment on polyester films and their adhesive properties on oak wood. BioResources 11:6335–6345.Google Scholar

  • Nussbaum, R.M. (1999) Natural surface inactivation of Scots pine and Norway spruce evaluated by CA measurements. Holz Roh- Werkst. 57:419–424.CrossrefGoogle Scholar

  • Oltean, L., Teischinger, A., Hansmann, C. (2008) Wood surface discolouration due to simulated indoor sunlight exposure. Holz Roh- Werkst. 66:51–56.CrossrefGoogle Scholar

  • Oltean, L., Hansmann, C., Nemeth, R., Teischinger, A. (2010) Wood surface discolouration of three Hungarian hardwood species due to simulated indoor sunlight exposure. Wood Res. 55:49–58.Google Scholar

  • Owens, D.K., Wendt, R.C. (1969) Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13:1741–1747.CrossrefGoogle Scholar

  • Pandey, K.K. (2005a) A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym. Degrad. Stab. 87:375–379.CrossrefGoogle Scholar

  • Pandey, K.K. (2005b) Study of the effect of photo-irradiation on the surface chemistry of wood. Polym. Degrad. Stab. 90:9–20.CrossrefGoogle Scholar

  • Pandey, K.K., Vuorinen, T. (2008) Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym. Degrad. Stab. 93:2138–2146.CrossrefGoogle Scholar

  • Peters, F., Hünnekens, B., Wieneke, S., Militz, H., Ohms, G., Viöl, W. (2017) Comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite. J. Phys. D: Appl. Phys. 50:475206.CrossrefGoogle Scholar

  • Peters, F., Gelker, M., Fleckenstein, M., Militz, H., Ohms, G., Viöl, W. (2018) Decrease of the surface pH of maple and the production of nitrate by three pulsed dielectric barrier discharge. Wood Sci. Technol. 52:1495–1510.CrossrefGoogle Scholar

  • Petrič, M., Oven, P. (2015) Determination of wettability of wood and is significance in wood science and technology: a critical review. Rev. Adhesion Adhesives 3:121–187.CrossrefGoogle Scholar

  • Piao, C., Winandy, J.E., Shupe, T.F. (2010) From hydrophilicity to hydrophobicity: a criti-cal review: part 1. Wettability and surface behaviour. Wood Fiber Sci. 42:490–510.Google Scholar

  • Poaty, B., Riedl, B., Blanchet, P., Blanchard, V., Stafford, L. (2013) Improved water repel-lency of black spruce wood surfaces after treatment in carbon tetrafluoride plasmas. Wood Sci. Technol. 47:411–422.CrossrefGoogle Scholar

  • Qin, Z., Chen, H., Gao, Q., Zhang, S., Li, J. (2015) Wettability of sanded and aged fast-growing poplar wood surfaces: I. Surface free energy. BioResources 10:1008–1023.Google Scholar

  • Rehn, P., Viöl, W. (2003) Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification. Holz Roh- Werkst. 61:145–150.CrossrefGoogle Scholar

  • Reinprecht, L., Tiňo, R., Šomšák, M. (2018) Adhesion of coatings to plasma modified wood at accelerated weathering. 9th European Conference on Wood Modification, Arnhem, Netherlands. p. 5.Google Scholar

  • Santoni, I., Pizzo, B. (2011) Effect of surface conditions related to machining and air exposure on wettability of different Mediterranean wood species. Int. J. Adhes. Adhes. 31:743–753.CrossrefGoogle Scholar

  • Skaar, C. (1988) Electrical properties of wood. In: Wood-Water Relations. Springer Series in Wood Science. Springer, Berlin, Heidelberg. pp. 207–262.Google Scholar

  • Sonderegger, W., Kránitz, K., Bues, C.-T., Niemz, P. (2015) Aging effects on physical and mechanical properties of spruce, fir and oak wood. J. Cult. Herit. 16:883–889.CrossrefGoogle Scholar

  • Temiz, A., Terziev, N., Eikenes, M., Hafren, J. (2007) Effect of accelerated weathering on surface chemistry of modified wood. Appl. Surf. Sci. 253:5355–5362.CrossrefGoogle Scholar

  • Tolvaj, L., Faix, O. (1995) Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* color measurements. Holzforschung 49:397–404.CrossrefGoogle Scholar

  • Tolvaj, L., Molnar, Z., Nemeth, R. (2013) Photodegradation of wood at elevated temperature: Infrared spectroscopic study. J. Photochem. Photobiol. B 121:32–36.CrossrefGoogle Scholar

  • Viöl, W. (1999) Modification of wood surfaces uses an electrode fed with alternating high voltages which generates an electrical discharge under atmospheric pressure to cover the wood surface. German patent application no. DE19957775C1.Google Scholar

  • Viöl, W. (2002) Method and apparatus for modifying surfaces by dielectric barrier discharge at atmospheric pressure. German patent application no. DE10228506B4.Google Scholar

  • Wålinder, M. (2000) Wetting Phenomena on Wood. Factors Influencing Measurements of Wood Wettability. KTH-Royal Institute of Technology, Dept. of Manufacturing Systems Wood Technology and Processing, Sweden. Doctoral dissertation. p. 62.Google Scholar

  • Weber, J., Halsall, C.J., Wargent, J.J., Paul, N.D. (2009) A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight. J. Environ. Monit. 11:654–659.CrossrefPubMedGoogle Scholar

  • Wolkenhauer, A., Avramidis, G., Hauswald, E., Militz, H., Viöl, W. (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int. J. Adhes. Adhes. 28:18–22.Google Scholar

  • Xie, L., Tang, Z., Jiang, L., Breedveld, V., Hess, D.W. (2015) Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surf. Coat. Technol. 281:125–132.CrossrefGoogle Scholar

  • Xu, G., Liu, J., Yao, C., Chen, S., Lin, F., Li, P., Shi, X., Zhang, G.-J. (2017) Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells. Phys. Plasmas 24.Google Scholar

  • Žigon, J., Petrič, M., Dahle, S. (2018) Dielectric barrier discharge (DBD) plasma pretreatment of lignocellulosic materials in air at atmospheric pressure for their improved wettability: a literature review. Holzforschung 72:979–991.CrossrefGoogle Scholar

  • Žigon, J., Zaplotnik, R., Ayata, Ü., Petrič, M., Dahle, S. (2019a) The influence of artificial weathering and treatment with FE-DBD plasma in atmospheric conditions on wettability of wood surfaces. 3. Niedersächsisches Symposium Materialtechnik, Clausthal, 14. bis 15. Februar 2019. Tagungsband 3. Niedersächsisches Symposium Materialtechnik 7. p. 559.Google Scholar

  • Žigon, J., Petrič, M., Dahle, S. (2019b) Raw and analyzed data to manuscript “Artificially aged spruce and beech wood surfaces reactivated using FE-DBD atmospheric plasma” (Version 1.0.0) [Data set]. Zenodo. DOI: 10.5281/zenodo.2645154.Google Scholar

  • Živković, V., Arnold, M., Radmanović, K., Richter, K., Turkulin, H. (2014) Spectral sensitivity in the photodegradation of fir wood (Abies alba ill.) surfaces: colour changes in natural weathering. Wood Sci. Technol. 48:239–252.CrossrefGoogle Scholar

About the article

Received: 2019-01-09

Accepted: 2019-06-27

Published Online: 2019-07-25

Published in Print: 2019-11-26


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors acknowledge the financial support from the Slovenian Research Agency (research program funding no. P4-0015, “Wood and lignocellulose composites”).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 12, Pages 1069–1081, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0005.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in