Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 12

Issues

Assessing cellulose dissolution efficiency in solvent systems based on a robust experimental quantification protocol and enthalpy data

Marc Kostag
  • Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcella Teixeira Dignani
  • Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matheus Costa Lourenço
  • Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thaís de Almeida Bioni
  • Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omar A. El Seoud
  • Corresponding author
  • Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-07 | DOI: https://doi.org/10.1515/hf-2019-0086

Abstract

Dissolution of microcrystalline cellulose (MCC) in pure ionic liquids (ILs) and IL/dimethyl sulfoxide (DMSO) mixtures (mole fraction χDMSO = 0.2–0.9) was quantified using a specially constructed mechanical stirring system that allows reproducible agitation speed; temperature control, and minimum solution-air contact. The electrolytes employed were: 1-(n-butyl)-3-methylimidazolium acetate (C4MeIm AcO), 1-(methoxyethyl)-3-methylimidazolium acetate (C3OMeIm AcO), 1,8-diazabicyclo[5.4.0]undec-7-enium acetate (DBU AcO), tetramethylguanidinium acetate (TMG AcO), and tetra(n-butyl)ammonium fluoride hydrate (TBAF·xH2O). The effects on MCC dissolution of IL/DMSO composition, and temperature (50, 70°C) were studied. C4MeIm AcO and C4MeIm AcO/DMSO were more efficient solvents than their C3OMeIm AcO counterparts, due to “deactivation” of the ether oxygen of C3OMeIm AcO. MCC dissolution by C4MeIm AcO/DMSO was compared with DBU AcO/DMSO, TMG AcO/DMSO at χDMSO = 0.6, and TBAF·xH2O/DMSO at χDMSO = 0.95. The relative efficiency was (solutions in DMSO): C4MeIm AcO > C3OMeIm AcO > DBU AcO > TMG AcO > TBAF·xH2O. The efficiency of C4MeIm AcO relative to C3OMeIm AcO is due to higher solution basicity. Isothermal titration calorimetry was used to study cellobiose-solvent interactions. Except for TBAF·xH2O/DMSO, these interactions are exothermic; the relative solvent efficiency increases with increasing dissolution |enthalpy|. Using the mole fraction concentration scale to report cellulose dissolution avoids possible ambiguities.

This article offers supplementary material which is provided at the end of the article.

Keywords: cellulose dissolution; ionic liquids; isothermal titration calorimetry; organic electrolyte solutions

References

  • Armarego, W.L.F., Chai, C.L.L. (2009) Purification of organic chemicals. In: Purification of Laboratory Chemicals. 6th ed. Butterworth-Heinemann, Oxford. pp. 88–444.Google Scholar

  • Bioni, T., Arêas, E.P.G., Couto, L.G., Favarin, G., El Seoud, O.A. (2015) Dissolution of cellulose in mixtures of ionic liquid and molecular solvents: relevance of solvent-solvent and cellulose-solvent interactions. Nord. Pulp Pap. Res. J. 30:105–111.CrossrefWeb of ScienceGoogle Scholar

  • Burchard, W. (1993) Macromolecular association phenomena, a neglected field of research? Trends Polym. Sci. 1:192–198.Google Scholar

  • Cao, Y., Wu, J., Zhang, J., Li, H., Zhang, Y., He, J. (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147:13–21.CrossrefWeb of ScienceGoogle Scholar

  • Catalán, J. (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 113:5951–5960.CrossrefWeb of ScienceGoogle Scholar

  • Chiad, K., Stelzig, S.H., Gropeanu, R., Weil, T., Klapper, M., Müllen, K. (2009) Isothermal titration calorimetry: a powerful technique to quantify interactions in polymer hybrid systems. Macromolecules 42:7545–7552.CrossrefWeb of ScienceGoogle Scholar

  • de Jesus, J.C., Pires, P.A.R., Mustafa, R., Riaz, N., El Seoud, O.A. (2017) Experimental and theoretical studies on solvation in aqueous solutions of ionic liquids carrying different side chains: the n-butyl-group versus the methoxyethyl group. RSC Adv. 7:15952–15963.CrossrefWeb of ScienceGoogle Scholar

  • de Oliveira, H.F.N., Rinaldi, R. (2015) Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry. ChemSusChem 8:1577–1584.PubMedCrossrefWeb of ScienceGoogle Scholar

  • El Seoud, O.A., Koschella, A., Fidale, L.C., Dorn, S., Heinze, T. (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8: 2629–2647.CrossrefWeb of SciencePubMedGoogle Scholar

  • El Seoud, O.A., Fidale, L.C., Ruiz, N., D’Almeida, M.L.O., Frollini, E. (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15:371–392.CrossrefWeb of ScienceGoogle Scholar

  • El Seoud, O.A., Nawaz, H., Arêas, E. (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Ferreira, D.C. (2018) Cellulose mixed esters: synthesis in homogeneous conditions, characterization and shaping. Ph.D. Thesis, University of São Paulo, São Paulo, SP, Brazil.Google Scholar

  • Fidale, L.C., Ruiz, N., Heinze, T., El Seoud, O.A. (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol. Chem.Phys. 209:1240–1254.CrossrefWeb of ScienceGoogle Scholar

  • Hauru, L.K.J., Hummel, M., King, A.W.T., Kilpeläinen, I., Sixta, H. (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905.CrossrefWeb of SciencePubMedGoogle Scholar

  • Hefter, G.T. (1991) Fluoride solvation – the case of the missing ion. Pure Appl. Chem. 63:1749–1758.CrossrefGoogle Scholar

  • Heinze, T., Liebert, T. (2012) Celluloses and polyoses/hemicelluloses. In: Polymer Science: A Comprehensive Reference. Eds. Matyjaszewski, K., Möller, M. Elsevier, Amsterdam. pp. 83–152.Google Scholar

  • Kostag, M., El Seoud, O.A. (2019) Dependence of cellulose dissolution in quaternary ammonium-based ionic liquids/DMSO on the molecular structure of the electrolyte. Carbohydr. Polym. 205:524–532.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kostag, M., Jedvert, K., Achtel, C., Heinze, T., El Seoud, O.A. (2018) Recent advances in solvents for the dissolution, shaping and derivatization of cellulose: quaternary ammonium electrolytes and their solutions in water and molecular solvents. Molecules 23:511.CrossrefWeb of ScienceGoogle Scholar

  • Kostag, M., Gericke, M., Heinze, T., El Seoud, O.A. (2019) Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 26:139–184.CrossrefWeb of ScienceGoogle Scholar

  • Liebert, T., Heinze, T. (2008) Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose. BioResources 3:576–601.Google Scholar

  • Lindman, B., Medronho, B., Alves, L., Costa, C., Edlund, H., Norgren, M. (2017) The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys. Chem. Chem. Phys. 19:23704–23718.CrossrefWeb of SciencePubMedGoogle Scholar

  • Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P. (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind. Crops Prod. 32:175–201.CrossrefWeb of ScienceGoogle Scholar

  • Mazza, M., Catana, D.-A., Vaca-Garcia, C., Cecutti, C. (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215.CrossrefWeb of ScienceGoogle Scholar

  • NBR ISO 5351:2012. (2012) Pulps – Determination of Limiting Viscosity Number in Cupri-Ethylenediamine (CED) Solution.Google Scholar

  • Ohno, H., Fukaya, Y. (2008) Task specific ionic liquids for cellulose technology. Chem. Lett. 38:2–7.Web of ScienceGoogle Scholar

  • Parviainen, A., King, A.W.T., Mutikainen, I., Hummel, M., Selg, C., Hauru, L.K.J., Sixta, H., Kilpeläinen, I. (2013) Predicting cellulose solvating capabilities of acid–base conjugate ionic liquids. ChemSusChem 6:2161–2169.Web of SciencePubMedCrossrefGoogle Scholar

  • Pinkert, A. (2012) Comment on “instantaneous dissolution of cellulose in organic electrolyte solutions”. J. Chem. Eng. Data 57:1338–1340.CrossrefWeb of ScienceGoogle Scholar

  • Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P. (2009) Ionic liquids and their interaction with cellulose. Chem. Rev. 109: 6712–6728.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Potthast, A., Rosenau, T., Buchner, R., Röder, T., Ebner, G., Bruglachner, H., Sixta, H., Kosma, P. (2002) The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9:41–53.CrossrefGoogle Scholar

  • Rai, G., Kumar, A. (2014) Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry. J. Phys. Chem. B 118:4160–4168.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Ramos, L.A., Morgado, D.L., El Seoud, O.A., da Silva, V.C., Frollini, E. (2011) Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392.CrossrefWeb of ScienceGoogle Scholar

  • Reichardt, C., Welton, T. (2010) Empirical parameters of solvent polarity. In: Solvents and Solvent Effects in Organic Chemistry, 4th ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. pp. 425–508.Google Scholar

  • Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124:4974–4975.CrossrefPubMedGoogle Scholar

  • Turnbull, W.B., Daranas, A.H. (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125:14859–14866.PubMedCrossrefGoogle Scholar

  • Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S., Freire, E. (2004) Isothermal titration calorimetry. Curr. Protoc. Cell Biol. 23:17.8.1–17.8.24.Google Scholar

  • Vitz, J., Erdmenger, T., Haensch, C., Schubert, U.S. (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem. 11:417–424.Web of ScienceCrossrefGoogle Scholar

  • Wang, H., Gurau, G., Rogers, R.D. (2012) Ionic liquid processing of cellulose. Chem. Soc. Rev. 41:1519–1537.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wiseman, T., Williston, S., Brandts, J.F., Lin, L.-N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179:131–137.CrossrefPubMedGoogle Scholar

  • Xu, A., Zhang, Y., Zhao, Y., Wang, J. (2013) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr. Polym. 92:540–544.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Xu, A., Cao, L., Wang, B., Ma, J. (2015) Dissolution behavior of cellulose in IL. Adv. Mater. Sci. Eng. Article ID: 406470, 4 pages. DOI: http://dx.doi.org/10.1155/2015/406470.

  • Zavrel, M., Bross, D., Funke, M., Büchs, J., Spiess, A.C. (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 100:2580–2587.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Zhang, X., Zhao, W., Li, Y., Li, C., Yuan, Q., Cheng, G. (2016) Synergistic effect of pretreatment with dimethyl sulfoxide and an ionic liquid on enzymatic digestibility of white poplar and pine. RSC Adv. 6:62278–62285.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2019-03-28

Accepted: 2019-06-14

Published Online: 2019-08-07

Published in Print: 2019-11-26


Funding Source: O.A. El Seoud and M. Kostag thank the FAPESP research foundation for financial support, postdoctoral fellowship, and the ITC equipment

Award identifier / Grant number: 2014/ 22136-4

Award identifier / Grant number: 2016/22869-7

Award identifier / Grant number: 2017/06394-1

Funding Source: O.A. El Seoud thanks CNPq for research productivity fellowship

Award identifier / Grant number: 307022/2014-5

O.A. El Seoud and M. Kostag thank the FAPESP research foundation for financial support, postdoctoral fellowship, and the ITC equipment, Funder Id: http://dx.doi.org/10.13039/501100001807 (grants 2014/ 22136-4, 2016/22869-7, 2017/06394-1, respectively). O.A. El Seoud thanks CNPq for research productivity fellowship (grant 307022/2014-5).


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 12, Pages 1103–1112, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0086.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Omar A. El Seoud, Marc Kostag, Kerstin Jedvert, and Naved I. Malek
Polymers, 2019, Volume 11, Number 12, Page 1917

Comments (0)

Please log in or register to comment.
Log in