Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 2

Issues

Carbon nanomaterials based on interpolyelectrolyte complex lignosulfonate-chitosan

Olga Brovko
  • N. Laverov Federal Center for Integrated Arctic Research, Northern Dvina Embankment 23, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irina Palamarchuk
  • N. Laverov Federal Center for Integrated Arctic Research, Northern Dvina Embankment 23, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konstantin Bogolitsyn
  • N. Laverov Federal Center for Integrated Arctic Research, Northern Dvina Embankment 23, Arkhangelsk 163000, Russia
  • Federal University named after M.V. Lomonosov, Northern Dvina Embankment 17, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikolay Bogdanovich
  • Federal University named after M.V. Lomonosov, Northern Dvina Embankment 17, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Artem Ivakhnov
  • N. Laverov Federal Center for Integrated Arctic Research, Northern Dvina Embankment 23, Arkhangelsk 163000, Russia
  • Federal University named after M.V. Lomonosov, Northern Dvina Embankment 17, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitriy Chukhchin
  • Federal University named after M.V. Lomonosov, Northern Dvina Embankment 17, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kristina Khviuzova
  • Federal University named after M.V. Lomonosov, Northern Dvina Embankment 17, Arkhangelsk 163000, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Valchuk
  • Corresponding author
  • N. Laverov Federal Center for Integrated Arctic Research, Northern Dvina Embankment 23, Arkhangelsk 163000, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-22 | DOI: https://doi.org/10.1515/hf-2017-0221

Abstract

A new approach to the formation of “fullerene-like” carbon-nitrogen carbogels based on the interpolyelectrolyte complex lignosulfonate-chitosan (IPEC LSNa-CT) was developed. It was established that carbogel maintained the morphology of the precursor complex, i.e. the spherical geometry and the particle size of its main fractions (40–55 nm) were stored in the carbonizate. The influence of pyrolysis (Py) temperature was studied in the range of 500–1000°C on the structure of carbonizate. Carbogels obtained under different processing conditions have a well-developed microporous structure. The specific surface area of carbogels reduced with increasing Py temperature according to their nitrogen content. The maximum specific surface area (438.3 m2 g−1) corresponds to the carbogel obtained at 600°C, while the maximum nitrogen content of this sample is 4.4%. The internal porosity of the material and the volume of supermicropores are reduced with increasing Py temperature due to the accumulation of double and triple carbon bonds in the carbogel. Apparently, the structure-forming N-atoms participate in the formation of condensed nitrogen-containing and cyclic structures as a donor of the electron pair and as such they accelerate the carbonization process.

Keywords: biopolymers; carbogels; carbonization; chitosan (CT); interpolyelectrolyte complexes (IPEC); lignosulfonates (LSNa); pore structure; pyrolysis; scanning electron microscopy (SEM)

References

  • Antolini, E. (2016) Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew. Sust. Energy Rev. 58:34–51.Web of ScienceCrossrefGoogle Scholar

  • Bellamy, L.J. The Infra-Red Spectra of Complex Molecules. John Wiley & Sons, Inc., New York, 1971.Google Scholar

  • Bhushan, B., Luo, D., Schricker, S.R., Sigmund, W., Zauscher, S. Handbook of Nanomaterials. Springer, 2014.Google Scholar

  • Brovko, O.S., Palamarchuk, I.A., Boitsova, T.A., Bogolitsyn, K.G., Valchuk, N.A., Chukhchin, D.G. (2015a) Influence of the conformation of biopolyelectrolytes on the morphological structure of their interpolymer complexes. Macromol. Res. 23:1059–1067.CrossrefWeb of ScienceGoogle Scholar

  • Brovko, O.S., Palamarchuk, I.A., Boitsova, T.A., Bogolitsyn, K.G., Kazakov, Ya.V., Chukhchin, D.G., Val’chuk, N.A. (2015b) Deformation and strength attributes of composite membranes based on biopolyelectrolyte complexes. Fibre Chem. 47:265–272.Web of ScienceCrossrefGoogle Scholar

  • Brovko, O., Palamarchuk, I., Valchuk, N., Bogolitsyn, K., Chukhchin, D., Boitsova, Т. (2017a) Gels of sodium alginate-chitosan interpolyelectrolyte complexes. Russ. J. Appl. Chem. A 91:1580–1585.CrossrefGoogle Scholar

  • Brovko, O., Palamarchuk, I., Bogolitsyn, K., Chukhchin, D., Ivakhnov, A., Valchuk, N. (2017b) Morphological features of organic and carbon aerogel materials based on sulfonated lignin. Holzforschung 71:583–590.Google Scholar

  • Dobele, G., Telysheva, G., Bogdanovich, N. (2006) Thermochemical activation of lignin for obtaining effective sorbents. In: Combined and Hybrid Adsorbents: Fundamentals and Applications (NATO Security through Science Series C: Environmental Security) Eds. Loureiro, J.M., Kartel, M.T. Springer, Dordrecht.Google Scholar

  • Frolov, Y.G. Course in Colloid Chemistry. Surface Phenomena and Disperse Systems. Chemistry, Moscow, 1982.Google Scholar

  • Goring, D.A.I. (2009) The physical chemistry of lignin. Pure Appl. Chem. 5:233–310.Google Scholar

  • Goring, D.A.I., Uuong, R., Gancet, C., Chanzy, H.J. (1979) The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy. Appl. Polym. Sci. 27:931–936.Google Scholar

  • Hsiao, Y.C., Yang, T.L. (2015) Data supporting chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components. Data Brief 4:551–558.PubMedCrossrefGoogle Scholar

  • Huang, J.M., Wang, I.D., Wang, C.H. (2001) Preparation and adsorptive properties of cellulose based activated carbon tows from cellulose filaments. J. Polym. Res. 8:201–207.CrossrefGoogle Scholar

  • Hulicova, D., Yamashita, J., Soneda, Y., Hatori, H., Kodama, M. (2005) Supercapacitors prepared from melamine-based carbon. Chem. Mater. 18:470–478.Google Scholar

  • Jia, Y.F., Xiao, B., Thomas, K.M. (2002) Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir 17:1241–1247.Google Scholar

  • Katchalsky, A., Mazur, J., Spitnik, P. (1957) Polybase properties of polyvinylamine. J. Polym. Sci. 23:513–532.CrossrefGoogle Scholar

  • Lina, W.C., Yub, D.G., Yanga, M.C. (2005) pH-sensitive polyectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids Surf. B. Biointerfaces 44:143–151.CrossrefGoogle Scholar

  • Mingfang, Y., Dongjie, Y., Deng, Y., Chen, P., Zhou, H., Xueqing, Q. (2010) Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 378:50–58.Google Scholar

  • Mykhailiv, O., Zubyk, H., Plonska-Brzezinska, M.E. (2017) Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chim. Acta 468:49–66.Web of ScienceCrossrefGoogle Scholar

  • Palamarchuk, I.A., Brovko, O.S., Boytsova, T.A., Vishnjakova, A.P., Makarevich, N.A. (2011) Influence of ionic straight of solution on complexation of silphoproduced biopolymer lignin and chitosan. Chem. Plant Raw Mater. 2:57–64.Google Scholar

  • Palamarchuk, I.A., Brovko, O.S., Bogolitsyn, K.G., Boitsova, T.A., Ladesov, A.V., Ivakhnov, A.D. (2015) Relationship of the structure and ion-exchange properties of polyelectrolyte complexes based on biopolymers. Russ. J. Appl. Chem. 88:103–109.Web of ScienceCrossrefGoogle Scholar

  • Pergushov, D.V., Remizova, E.V., Feldthusen, J., Zezin, A.B., Muller A.H.E., Kabanov, V.A. (2003) Novel water-soluble micellar-interpolyelectrolyte complexes. J. Phys. Chem. B 107:8093–8096.CrossrefGoogle Scholar

  • Raymond, L., Morin, F.G., Marchessaut, R.H. (1993) Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohydr. Res. 246:331–336.CrossrefGoogle Scholar

  • Rodriguez-Reinoso, F. (1998) The role of carbon materials in heterogeneous catalysis. Carbon 3:159–175.Google Scholar

  • Sokolov, O.M. Determination of molecular weights of lignins on ultracentrifuge and by gel filtration. Leningrad Forestry Academy, Leningrad, 1987.Google Scholar

  • Sukhorukov, G.B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V.I., Mohwald, H. (1998) Stepwise polyalectrolyte assembly on particles surface: a novel approach to colloid design. Polym. Adv. Technol. 9:759–767.CrossrefGoogle Scholar

  • Sundararajan, V.M., Howard, W.T.M. (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142.CrossrefPubMedGoogle Scholar

  • Tanaike, O., Hatori, H., Yomada, Y., Shiraishi, S., Oya, A. (2003) Preparation and pore control of highly mesoporous carbon from defluorinated PTFE. Carbon 41:1759–1764.CrossrefGoogle Scholar

  • Vishnyakova, A.P., Brovko, O.S. (2009) Application of ultrafiltration for clearing, concentration and fractionating of lignosulphonates of sulfite lye. Ecol. Ind. Russia 8:37–39.Google Scholar

  • Wang, Y.X., Tan, S.H., Jiang, D.L., Zhang, X.Y. (2003) Preparation of porous carbon derived from mixtures of furfuryl and glycol with controlled pore size distribution. Carbon 41:2065–2072.CrossrefGoogle Scholar

  • Xu, F., Wu, D., Fu, R., Wei, B. (2017) Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20:629–656.Web of ScienceCrossrefGoogle Scholar

  • Yengejeh, S.A., Kazemi, S.A., Ochsner, A. (2017) Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Comput. Mater. Sci. 136:85–101.CrossrefWeb of ScienceGoogle Scholar

  • Yin, Y.J., Yao, K.D., Chengy, G.X., Ma, J.B. (1999) Properties of polyelectrolyte complex films of chitosan and gelatine. Polym. Int. 48:429–432.CrossrefGoogle Scholar

  • Zakis, G.F. Functional Analysis of Lignins and Their Derivatives. TAPPI Press, Atlanta, 1994.Google Scholar

About the article

Received: 2017-12-29

Accepted: 2018-07-18

Published Online: 2018-08-22

Published in Print: 2019-02-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This research was funded by FASO of Russia under the project agreement no. AAAA-A18-118012390231-9 “Physic-chemical, genetic and morphological bases of the plant objects adaptation under the conditions of the changing climate of high latitudes” We used the equipment CCU SE “Arctic” [Northern (Arctic) Federal University] and the equipment of CCU SE CT RF-Arctic (N. Laverov Federal Center for Integrated Arctic Research).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 2, Pages 181–187, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2017-0221.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in