Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 2

Issues

Radical transfer system in the enzymatic dehydrogenative polymerization (DHP formation) of coniferyl alcohol (CA) and three dilignols

Yasuyuki Matsushita
  • Corresponding author
  • Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, Phone/Fax: +81-52-789-4174
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Masaya Okayama / Dan Aoki / Sachie Yagami / Kazuhiko Fukushima
Published Online: 2018-08-13 | DOI: https://doi.org/10.1515/hf-2018-0044

Abstract

No clear picture has yet been elaborated concerning the mechanism of lignin growth, and thus this topic is the focus of the present paper. Namely, the enzymatic dehydrogenative polymerization (DHP formation) of coniferyl alcohol (CA, as a monolignol) and three dilignols and their reaction kinetics were investigated. The dilignols [guaiacylglycerol-β-coniferyl ether (IβO4), dehydrodiconiferyl alcohol (IIβ5), and pinoresinol (IIIββ)] and CA as a monolignol [(3-OCD3)-coniferyl alcohol (CAOCD3)] were synthesized and subjected to enzymatic DHP formation. The dilignol derived from CAOCD3 could be identified by its higher molecular weight in comparison with the starting dilignols (IβO4, IIβ5, and IIIββ). Based on the observed consumption rate of the CA and its dilignols, it was proposed that a radical transfer system exists between the dilignols, which is generated from the CA and the starting substrates.

Keywords: coniferyl alcohol; dehydrodiconiferyl alcohol; dilignol; enzymatic dehydrogenative polymerization; guaiacylglycerol-β-coniferyl ether; monolignol; pinoresinol; radical transfer

References

  • Adler, E. (1977) Lignin chemistry – past, present and future. Wood Sci. Technol. 11:169–218.CrossrefGoogle Scholar

  • Aoyama, W., Sasaki, S., Matsumura, S., Mitsunaga, T., Hirai, H., Tsutsumi, Y., Nishida, T.J. (2002) Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. Wood Sci. 48:497–504.CrossrefGoogle Scholar

  • Boerjan, W., Ralph, J., Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–549.CrossrefPubMedGoogle Scholar

  • Fournand, D., Cathala, B., Lapierre, C. (2003) Initial steps of the peroxidase-catalyzed polymerization of coniferyl alcohol and/or sinapyl aldehyde: capillary zone electrophoresis study of pH effect. Phytochemistry 62:139–146.CrossrefPubMedGoogle Scholar

  • Freudenberg, K. (1959) Biosynthesis and constitution of lignin. Nature 183:1152–1155.CrossrefPubMedGoogle Scholar

  • Freudenberg, K. (1968) The constitution and biosynthesis of lignin. In: Constitution and Biosynthesis of Lignin. Eds. Freudenberg, K., Neish, A.C. Springer, Berlin. pp. 47–122.Google Scholar

  • Freudenberg, K., Hübner, H.H. (1952) Oxyzimtalkohole und ihre Dehydrierungs-polymerisate. Chem. Berichte 85:1181–1191.CrossrefGoogle Scholar

  • Fukushima, K., Terashima, N. (1991) Heterogeneity in formation of lignin. XIV. Formation and structure of lignin differentiating xylem of Ginko biloba. Holzforschung 45:87–94.CrossrefGoogle Scholar

  • Hatfield, R.D., Vermerris, W. (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 126:1351–1357.Google Scholar

  • Matsushita, Y., Ko, C., Aoki, D., Hashigaya, S., Yagami, S., Fukushima, K. (2015) Enzymatic dehydrogenative polymerization of monolignol dimers. J. Wood Sci. 61:608–619.CrossrefWeb of ScienceGoogle Scholar

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W. (2004a) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Rev. 3:29–60.CrossrefGoogle Scholar

  • Ralph, J., Bunzel, M., Marita, J.M., Hatfield, R.D., Lu, F., Kim, H., Schatz, P.F., Grabber, J.H., Steinhart, H. (2004b) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem. Rev. 3:79–96.CrossrefGoogle Scholar

  • Sarkanen, K.V. (1971) Precursors and their polymerisation, Chapter 4, 95–163. In: Lignins – Occurence, Formation, Structure and Reactions. Eds. Sarkanen, K.V., Ludwig, C.H. Wiley-Interscience, New-York. pp. 916.Google Scholar

  • Sasaki, S., Nishida, T., Tsutsumi, Y., Kondo, R. (2004) Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in β-O-4 linkage. FEBS Lett. 562:197–201.CrossrefGoogle Scholar

  • Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., Tsutsumi, Y. (2013) Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J. Agric. Food Chem. 61:3781–3788.CrossrefWeb of SciencePubMedGoogle Scholar

  • Takabe, K., Fujita, M., Harada, H., Saiki, H. (1981) Lignification process of Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 27:813–820.Google Scholar

  • Takahama, U. (1995) Oxidation of hydroxycinnamic acid and hydroxycinnamyl alcohol derivatives by laccase and peroxidase. Interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reactions. Physiol. Plant. 93:61–68.CrossrefGoogle Scholar

  • Takahama, U., Oniki, T. (1994) Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol. 35:593–600.CrossrefGoogle Scholar

  • Takahama, U., Oniki, T. (1997) Enhancement of peroxidase-dependent oxidation of sinapyl alcohol by an apoplastic component, 4-coumaric acid ester isolated from epicotyls of Vigna angularis L. Plant Cell Physiol. 38:456–462.CrossrefGoogle Scholar

  • Takahama, U., Oniki, T., Shimokawa, H. (1996) A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in the apoplast: enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant Cell Physiol. 37:499–504.CrossrefGoogle Scholar

  • Terashima, N., Fukushima, K. (1988) Heterogeneity in formation of lignin–XI: an autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci. Technol. 22:259–270.CrossrefGoogle Scholar

  • Tobimatsu, Y., Takano, T., Kamitakahara, H., Nakatsubo, F. (2008) Studies on the dehydrogenative polymerizations (DHPs) of monolignol β-glycosides: Part 4. Horseradish peroxidasecatalyzed copolymerization of isoconiferin and isosyringin. Holzforschung 62:495–500.Google Scholar

  • Tobimatsu, Y., Takano, T., Kamitakahara, H., Nakatsubo, F. (2010) Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization. Part 2: pH effect in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol. Holzforschung 64:183–192.Web of ScienceGoogle Scholar

About the article

Received: 2018-03-06

Accepted: 2018-07-18

Published Online: 2018-08-13

Published in Print: 2019-02-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 2, Pages 189–195, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0044.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in