Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 9

Issues

Influence of Quercus petraea Liebl. wood structure on the permeation of oxygen through wine barrel staves

Ignacio NevaresORCID iD: https://orcid.org/0000-0002-9057-255X / Maria del Alamo-SanzaORCID iD: https://orcid.org/0000-0002-0833-6081 / Víctor Martínez-MartínezORCID iD: https://orcid.org/0000-0002-3730-7407 / María Menéndez-Miguélez
  • Department of Agroforestry Engineering, UVaMOX – Higher Tech. Col. of Agricultural Engineering, Universidad de Valladolid, 34001 Palencia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Van den BulckeORCID iD: https://orcid.org/0000-0003-2939-5408
  • Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
  • Ghent University Centre for X-ray Tomography (UGCT), Proeftuinstraat 86, B-9000 Ghent, Belgium
  • orcid.org/0000-0003-2939-5408
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joris Van AckerORCID iD: https://orcid.org/0000-0002-8961-0176
  • Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
  • Ghent University Centre for X-ray Tomography (UGCT), Proeftuinstraat 86, B-9000 Ghent, Belgium
  • orcid.org/0000-0002-8961-0176
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-24 | DOI: https://doi.org/10.1515/hf-2018-0299

Abstract

The anatomical characteristics of oak wood, which is usually employed for making wine barrels, affect the properties of the wine, because these characteristics are related to the chemical compounds that can be potentially transferred to wine during the aging process. Grain, as the rate of tree growth, is the most commonly employed parameter to define the quality of the oak wood used in cooperage. Nevertheless, oxygen is a key factor in this process and there are few articles that evaluate the oxygen transmission rate (OTR) of the wood employed in cooperage. This work presents the evaluation of the anatomical characteristics of the French oak (Quercus petraea Liebl.) measured with X-ray computed tomography and the OTR of 267 wood samples extracted from recently constructed wine barrels. This study demonstrates that the OTR is dependent on the anatomical features of oak wood, the first step to classify a natural material as wood for custom oxygenation barrel making. OTR cannot be determined from the wood grain or any other single property because it depends on the overall anatomical characteristics of each wood sample, the grain and the average earlywood and latewood width being the three parameters with a stronger correlation with the OTR.

This article offers supplementary material which is provided at the end of the article.

Keywords: oak barrel staves; oak wood structure; oxygen transmission rate (OTR); X-ray computed tomography (CT)

References

  • Acuña, L., Gonzalez, D., de la Fuente, J., Moya, L. (2014) Influence of toasting treatment on permeability of six wood species for enological use. Holzforschung 65:447–454.Web of ScienceGoogle Scholar

  • Boidron, J.N., Chatonnet, P., Pons, M. (1988) Influence du bois sur certaines substances odorantes des vins. Connaissance Vigne Vin 22:275–294.Google Scholar

  • Bowman, H.A., Schoonover, R.M. (1967) Procedure for high precision density determinations by hydrostatic weighing. J. Res. Natl. Bur. Stand. Sec. C 71C:179–198.Google Scholar

  • Bramhall, G. (1995) Diffusion and the drying of wood. Wood Sci. Technol. 29:209–215.Google Scholar

  • Chatonnet, P. (1992) Origin and processing of oak used in cooperage. Influence of the origin and the seasoning on the composition and on the quality of the oak. J. Int. Sci. Vigne Vin. Special no.: 39–49.Google Scholar

  • Chatonnet, P., Dubourdieu, D. (1998) Comparative study of the characteristics of American white oak (Quercus alba) and European oak (Quercus petraea and Q. robur) for production of barrels used in barrel aging of wines. Am. J. Enol. Viticult. 49:79–85.Google Scholar

  • Choong, E.T., Tesoro, F.O., Manwiller, F. (1974) Permeability ot twenty-two small diameter hardwoods growing on southern pine sites. Wood Fiber 6:91–101.Google Scholar

  • del Alamo, M., Nevares, I. (2012) Device for measuring the permeability and diffusivity of gases in porous materials and method for measuring said parameters using the device. In: WO2012107625A1. World Intellectual Property Organization.Google Scholar

  • del Alamo-Sanza, M., Nevares, I. (2014) Recent advances in the evaluation of the oxygen transfer rate in oak barrels. J. Agric. Food. Chem. 62:8892–8899.PubMedWeb of ScienceCrossrefGoogle Scholar

  • del Alamo-Sanza, M., Nevares, I., Mayr, T., Baro, J.A., Martínez-Martínez, V., Ehgartner, J. (2016) Analysis of the role of wood anatomy on oxygen diffusivity in barrel staves using luminescent imaging. Sens. Actuators B 237:1035–1043.CrossrefWeb of ScienceGoogle Scholar

  • del Alamo-Sanza, M., Cárcel, L.M., Nevares, I. (2017) Characterization of the oxygen transmission rate of oak wood species used in cooperage. J. Agric. Food. Chem. 65:648–655.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Dierick, M., Van Loo, D., Masschaele, B., Boone, M., Van Hoorebeke, L. (2010) A LabVIEW® based generic CT scanner control software platform. J. X-Ray Sci. Technol. 18:451–461.Web of ScienceGoogle Scholar

  • Fernández De Simón, B., Cadahía, E., Jalocha, J. (2003) Volatile compounds in a Spanish red wine aged in barrels made of Spanish, French, and American oak wood. J. Agric. Food. Chem. 51:7671–7678.CrossrefGoogle Scholar

  • Feuillat, F. Contribution à l’étude des phénomènes d’échanges bois/vin/atmosphère à l’aide d’un “fût” modèle. Relations avec l’anatomie du bois de chêne (*Quercus robur* L., *Quercus petraea* Liebl.) Lab. de Recherches En Sciences Forestières de l’ENGREF. Nancy; France, Ecole Nationale du Génie Rural des Eaux et des Forêts, 1996.Google Scholar

  • Feuillat, F., Keller, R. (1997) Variability of oak wood (Quercus robur L., Quercus petraea Liebl.) anatomy relating to cask properties. Am. J. Enol. Viticult. 48:502–508.Google Scholar

  • Feuillat, F., Perrin, J.R., Keller, R., Aubert, D., Gelhaye, P., Houssement, C., Perrin, J., Pierre, M. (1994) Simulation expérimentale de “L’interface Tonneau”: mesure des cinétiques d’imprégnation du liquide dans le bois et d’évaporation de surface. J Int. Sci. Vigne Vin. 28:227–245.Google Scholar

  • Feuillat, F., Moio, L., Guichard, E., Marinov, M., Fournier, N., Puech, J.-L. (1997) Variation in the concentration of ellagitannins and cis- and trans-{beta}-methyl-{gamma}-octolactone extracted from oak wood (Quercus robur L., Quercus petraea Liebl.) under model wine cask conditions. Am. J. Enol. Viticult. 48:509–515.Google Scholar

  • Guillaume de Pracomtal, M.M., Teissier du Cros, R., Monteau, A.-C. (2014) Types of oak grain, wine élevage in barrel. Pract. Winery Vineyard (July):64–69.Google Scholar

  • Hansmann, C., Gindl, W., Wimmer, R. (2002) Permeability of wood – a review. Wood Res. 47:1–16.Google Scholar

  • Kern, Z., Patkó, M., Kázmér, M., Fekete, J., Kele, S., Pályi, Z. (2013) Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quat. Int. 293:257–267.CrossrefGoogle Scholar

  • Liese, W., Bauch, J. (1967) On the closure of bordered pits in conifers. Wood Sci. Technol. 1:1–13.CrossrefGoogle Scholar

  • Mantanis, G.I., Young, R.A. (1997) Wetting of wood. Wood Sci. Technol. 31:339–353.CrossrefGoogle Scholar

  • Masschaele, B., Dierick, M., Van Loo, D., Boone, M.N., Brabant, L., Pauwels, E., Cnudde, V., Van Hoorebeke, L. (2013) HECTOR: a 240 kV micro-CT setup optimized for research. J. Phys. Conf. Ser. 463:012012.CrossrefGoogle Scholar

  • Mirabel, M., Teissier du Cros, R., de Beauregard, D., Balu, F., Giraud, W., Comtat, M. (2012) Aging wine in barrel: is there a link between oak wood grain size and porosity? In: Oeno2011. Actes de colloques du 9e symposium international d’oenologie de Bordeaux. Eds. Doneche, B., Darriet, P. Université Bordeaux Segalen, Bordeaux, pp. 951–955.Google Scholar

  • Nevares, I., del Alamo-Sanza, M. (2015) Oak stave oxygen permeation: a new tool to make barrels with different wine oxygenation potentials. J. Agric. Food. Chem. 63:1268–1275.CrossrefWeb of SciencePubMedGoogle Scholar

  • Nevares, I., del Alamo-Sanza, M. (2017) New materials for the ageing of wines and beverages. Evaluation and comparison. In:Food packaging and preservation (1st edition). Eds.Grumezescu, A., Holban, A.M. Elsevier Academic Press, London. pp. 375–404.Google Scholar

  • Nevares, I., Crespo, R., González, C., Alamo-Sanza, M. del. (2014) Imaging of oxygen permeation in the oak wood of wine barrels using optical sensors and a colour camera. Aust. J. Grape Wine Res. 20:353–360.CrossrefGoogle Scholar

  • Nevares, I., Mayr, T., Baro, J.A., Ehgartner, J., Crespo, R., del Alamo-Sanza, M. (2016) Ratiometric oxygen imaging to predict oxygen diffusivity in oak wood during red wine barrel aging. Food Bioprocess Technol. 9:1049–1059.CrossrefWeb of ScienceGoogle Scholar

  • Peterson, R.G. (1976) Formation of reduced pressure in barrels during wine aging. Am. J. Enol. Viticult. 27:80–81.Google Scholar

  • Petty, J.A. (1973) Diffusion of non-swelling gases through dry conifer wood. Wood Sci. Technol. 7:297–307.CrossrefGoogle Scholar

  • Plötze, M., Niemz, P. (2011) Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur. J. Wood Wood Prod. 69:649–657.Web of ScienceCrossrefGoogle Scholar

  • Satish Kumar (1992) Some aspects of fluid flow through wood (V). Factors influencing variation in gas permeability within a wood species. J. Tim. Dev. Assoc. 38:5–13.Google Scholar

  • Scheikl, M., Dunky, M. (1998) Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52:89–94.CrossrefGoogle Scholar

  • Sebastian, L., Siau, J., Skaar, C. (1973) Unsteady-state axial flow of gas in wood. Wood Sci. 6:167–174.Google Scholar

  • Siau, J.F. (1971) Flow in wood. Syracuse University Press, Syracuse, NY.Google Scholar

  • Siau, J.F. (1984) Transport processes in wood. Springer series in wood science. Springer-Verlag, Berlin/New York.Google Scholar

  • Siau, J.F. (1995) Wood; influence of moisture on physical properties. Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar

  • Sorz, J., Hietz, P. (2006) Gas diffusion through wood: implications for oxygen supply. Trees.-Struct. Funct. 20:34–41.CrossrefGoogle Scholar

  • Stamm, A.J. (1935) The effect of changes in the equilibrium relative vapor pressure upon the capillary structure of wood. Physics 6:334–342.CrossrefGoogle Scholar

  • Tokuo Yokota (1967) Diffusion of non swelling gas through wood. Mokuzai Gakkaishi 13(6):225–231.Google Scholar

  • Tsoumis, G. (1968) Wood as raw material source, structure, chemical composition, growth, degradation, and identification. Pergamon Press, Oxford /New York.Google Scholar

  • Vivas, N. (1995) The notion of grain in cooperage. J. Sci. Tech. Tonnellerie 1:17–32.Google Scholar

  • Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., Nonier, M.F. (2003) Mise en évidence du passage de l’oxygène au travers des douelles constituant les barriques par l’utilisation d’un dispositif original de mesure de la porosité du bois. Premiers résultats. Sci. Aliments 23:655–678.CrossrefGoogle Scholar

  • Vlassenbroeck, J., Masschaele, B., Dierick, M., Cnudde, V., De Witte, Y., Pieters, K., Van Hoorebeke, L., Jacobs, P. (2007) Recent developments in the field of X-ray nano- and micro-CT at the Centre for X-ray Tomography of the Ghent University. Microsc. Microanal. 13(Suppl. S02):184–185.Google Scholar

  • Weigl, M., Grabner, M., Wimmer R. (2004) Comparison of earlywood width, latewood width, and total ring-width measurements in oak. In: Abstr. EuroDendro 2004, Rendsburg, Germany. pp. 52–53.Google Scholar

About the article

Received: 2018-12-14

Accepted: 2019-03-26

Published Online: 2019-05-24

Published in Print: 2019-08-27


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The work was funded by Junta de Castilla y León (Funder Id: http://dx.doi.org/10.13039/ 501100008431, VA028U16), MINECO (Funder Id: http://dx.doi.org/10.13039/501100003329, AGL2014-54602-P), FEDER, Interreg España-Portugal Programme (Iberphenol).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 9, Pages 859–870, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0299.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
V. Martínez-Martínez, M. del Alamo-Sanza, and I. Nevares
Materials & Design, 2019, Volume 181, Page 107979

Comments (0)

Please log in or register to comment.
Log in