Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 74, Issue 1


Genotypic variation in the basic density, dynamic modulus of elasticity and tracheid traits of Pinus elliottii in three progeny trials in southern China

Meng LaiORCID iD: https://orcid.org/0000-0002-7101-3891 / Leiming Dong
  • State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chunhui Leng
  • Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lu Zhang
  • Corresponding author
  • Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Min Yi
  • Corresponding author
  • Key Laboratory of Silviculture, Co-Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-26 | DOI: https://doi.org/10.1515/hf-2019-0046


A firm understanding of the genetic relationships among wood properties is a prerequisite for breeding for higher wood quality in Pinus elliottii families. To examine and deal with such relationships, increment cores were sampled at breast height from 1260 trees in 42 open-pollinated families in three 27-year-old Slash pine progeny trials in southern China, and genetic variation, genotype-by-environment (G × E) interaction, genetic correlation and correlated response were investigated. The basic density (BD), dynamic modulus of elasticity (MOED) and tracheid traits were found to be under moderate to strong genetic control for the three locations combined, with individual narrow-sense and family mean heritability ranging from 0.28 to 0.44 and 0.52 to 0.69, respectively. Type B genetic correlation estimates indicated that the G × E interaction had a small-level influence on wood properties. Strong genetic correlations (rg) were found between BD and MOED at the three sites (rg = 0.46–0.85), and BD or MOED showed moderate to strong correlations with most tracheid traits at specific localities. In tree breeding programs, one possible strategy would be to improve pulpwood quality and the strength of structural wood through selection for different wood quality traits.

Keywords: basic density (BD); dynamic modulus of elasticity (MOED); families; genetic correlation; genetic gains; heritability; Pinus elliottii; tracheid traits


  • Baltunis, B.S., Wu, H.X., Powell, M.B. (2007) Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Can. J. For. Res. 37:2164–2174.Web of ScienceCrossrefGoogle Scholar

  • Burdon, R.D. (1977) Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silv. Genet. 26:168–175.Google Scholar

  • Butler, D.G., Cullis, B.R., Gilmour, A.R., Gogel, B.J. ASReml-R Reference Manual. Department of Primary Industries and Fisheries, Brisbane, Australia, 2009.Google Scholar

  • Chen, Z.Q., Gil, M.R.G., Karlsson, B., Lundqvist, S.O., Olsson, L., Wu, H.X. (2014) Inheritance of growth and solid wood quality traits in a large Norway spruce population tested at two locations in southern Sweden. Tree Genes Genomes 10:1291–1303.CrossrefGoogle Scholar

  • Chen, Z.Q., Karlsson, B., Lundqvist, S.O., García, M.R., Olsson, L., Wu, H.X. (2015) Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce. Ann. For. Sci. 72:499–508.CrossrefWeb of ScienceGoogle Scholar

  • Cornelius, J. (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can. J. For. Res. 24:372–379.CrossrefGoogle Scholar

  • DeBell, D.S., Singleton, R., Harrington, C., Gartner, B.L. (2002) Wood density and fiber length in young Populus stems: relation to clone, age growth rate, and pruning. Wood Fiber Sci. 34:529–539.Google Scholar

  • Dungey, H.S., Matheson, D.K., Evans, R. (2006) Genetics of wood stiffness and its component traits in Pinus radiata. Can. J. For. Res. 36:1165–1178.CrossrefGoogle Scholar

  • Fielding, J.M. Variation in Monterey Pine. Forestry and Timber Bureau, Australia Bulletin No. 31, 1953. p. 43.Google Scholar

  • Fries, A. (2012) Genetic parameters, genetic gain and correlate d responses in growth, fibre dimensions and wood density in a Scots pine breeding population. Ann. For. Sci. 69:783–794.CrossrefGoogle Scholar

  • Fries, A., Ericsson, T. (2003) Measuring relative fiber length in Scots pine by non-destructive wood sampling. Holzforschung 57:400–406.CrossrefGoogle Scholar

  • Gilmour, A.R., Gogel, B.J., Cullis, B.R., Thompson, R., Butler, D., Cherry, M., Collins, D., Dutkowski, G., Harding, S.A., Haskard, K. ASReml User Guide Release 3.0. VSN; International Ltd., Hemel Hempstead, UK, 2009.Google Scholar

  • Hannrup, B., Ekberg, I. (1998) Age-age correlations for tracheid length and wood density in Pinus sylvestris (L.). Can. J. For. Res. 28:1373–1379.CrossrefGoogle Scholar

  • Hannrup, B., Cahalan, C., Chantre, G., Grabner, M., Karlsson, B., Bayon, I., Jones, G.L., Müller, U., Pereira, H., Rodrigues, J.C., Rosner, S., Rozenberg, P., Wilhelmsson, L., Wimmer, R. (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. For. Res. 19:14–29.CrossrefGoogle Scholar

  • Huda, A.S.M., Koubaa, A., Cloutier, A., Hernández, R.E., Périnet, P., Fortin, Y. (2018) Phenotypic and genotypic correlations for wood properties of hybrid poplar clones of southern Quebec. Forests 9:1–17.Web of ScienceGoogle Scholar

  • Igartua, D.V., Monteoliva, S.E., Monterubbianesil, M.G., Villegas, M.S. (2003) Basic density and fiber length at breast height of Eucalyptus globulus ssp. globulus for parameter prediction of the whole tree. IAWA J. 24:73–184.Google Scholar

  • Jiang, X.M., Luo, X.Q., Yin, Y.F. (2002) Genetic variation in wood properties of 18 provenances of Pinus elliottii. Sci. Silva. Sin. 3:130–135.Google Scholar

  • Kennedy, S.G., Cameron, A.D., Lee, S.J. (2013) Genetic relationships between wood quality traits and diameter growth of juvenile core wood in Sitka spruce. Can. J. For. Res. 43:1–6.CrossrefWeb of ScienceGoogle Scholar

  • Kien, N.D., Jansson, G., Harwood, C., Almqvist, C., Ha, H.T. (2008) Genetic variation in wood basic density and Pilodyn penetration and their relationships with growth, stem straightness and branch size for Eucalyptus urophylla S. T. Blake in Northern Vietnam. N. Zeal. J. For. Sci. 38:160–175.Google Scholar

  • Lachenbruch, B., Johnson, G.R., Downes, G.M., Evans, R. (2010) Relationships of density, microfibril angle, and sound velocity with stiffness and strength in mature wood of Douglas-fir. Can. J. For. Res. 40:55–64.Web of ScienceCrossrefGoogle Scholar

  • Lai, M., Dong, L.M., Yi, M., Sun, S.W., Zhang, Y.Y., Fu, L., Xu, Z.H., Lei, L., Leng, C.H., Zhang, L. (2017) Genetic variation, heritability and genotype ×environment interactions of resin yield, growth traits and morphologic traits for Pinus elliottii at three progeny trials. Forests 8:1–16.Web of ScienceGoogle Scholar

  • Liu, Q.H., Zhou, Z.C., Fan, H.H., Liu, Y.R. (2013) Genetic variation and correlation among resin yield, growth, and morphologic traits of Pinus massoniana. Silv. Genet. 62:38–44.CrossrefGoogle Scholar

  • Nyakuengama, J.G., Evans, R., Matheson, C., Spencer, D., Vinden, P. (1997) Time trends in the genetic control of wood microstructure traits in Pinus radiata. APPITA J. 50:486–494.Google Scholar

  • Pitre, F.E., Cook, J.E.K., Mackay, J.J. (2007) Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar. Tree Struct. Funct. 21:249–259.CrossrefGoogle Scholar

  • Pliura, A., Zhang, S.Y., MacKay, J., Bousquet, J. (2007) Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trails. For. Ecol. Manag. 238:92–106.CrossrefGoogle Scholar

  • Pot, D., Chantre, G., Rozenberg, P., Rodrigues, J.C., Jones, G.L., Pereira, H., Hannrup, B., Cahalan, C., Plomion, C. (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Ann. For. Sci. 59:563–575.CrossrefGoogle Scholar

  • Schimleck, L.R., Evans, R. (2004) Estimation of Pinus radiata tracheid morphological characteristics by near infrared spectroscopy. Holzforschung 58:66–73.CrossrefGoogle Scholar

  • Schimleck, L.R., Michell, A.J., Raymond, C.A., Muneri, A. (1999) Estimation of basic density of Eucalyptus globulus using near-infrared spectroscopy. Can. J. For. Res. 29:194–202.CrossrefGoogle Scholar

  • Self, S.G., Liang, K.Y. (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82:605–610.CrossrefGoogle Scholar

  • Shi, J.T., Ding, X.H., Wang, X.J. (2018) Wood tracheid morphology and wood density in seven clones of Pinus elliottii. J. Northwest. Chin. For. Univ. 33:188–192.Google Scholar

  • Steffenrem, A., Kvaalen, H., Høibø, O.A., Skrøppa, T. (2009) Genetic variation of wood quality traits and relationships with growth in Picea abies. Scand. J. Forest Res. 24:15–27.CrossrefWeb of ScienceGoogle Scholar

  • Wang, X. (2013) Acoustic measurements on trees and logs: a review and analysis. Wood Sci. Technol. 47:965–975.CrossrefWeb of ScienceGoogle Scholar

  • Watson, P., Bradley, M. (2009) Canadian pulp fibre morphology: superiority and considerations for end use potential. For. Chron. 85:401–408.CrossrefWeb of ScienceGoogle Scholar

  • Wielinga, B., Raymond, C.A., James, R., Matheson, A.C. (2009) Genetic parameters and genotype by environment interactions for green and basic density and stiffness of Pinus radiata D. Don estimated using acoustics. Silvae Genet. 58:112–122.Google Scholar

  • Wu, H.W., Powell, M.B., Yang, J.L., Ivković, M., Mcrae, T.A. (2007) Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64:1–9.CrossrefWeb of ScienceGoogle Scholar

  • Wu, H.X., Ivkovic, M., Gapare, W.J., Matheson, A.C., Baltunis, B.S., Powell, M.B., McRae, T.A. (2008) Breeding for wood quality and profit in Pinus radiata: a review of genetic parameter estimates and implications for breeding and deployment. New Zeal. J. For. Sci. 38:56–87.Google Scholar

  • Wu, S.J., Xu, J.M., Li, G.Y., Risto, V. (2011) Genotypic variation in wood properties and growth traits of Eucalyptus hybrid clones in southern china. New Forest. 42:35–50.CrossrefWeb of ScienceGoogle Scholar

  • Wu, F., Zhang, P.D., Pei, J.C., Kang, X.Y. (2013a) Genotypic parameters of wood density and fiber traits in triploid hybrid clones of Populus tomentosa at five clonal trials. Ann. Forest. Sci. 70:751–759.CrossrefWeb of ScienceGoogle Scholar

  • Wu, S.J., Xu, J.M., Li, G.Y., Lu, Z.H., Han, C., Hu, Y., Hu, X. (2013b) Genetic variation and genetic gain in growth traits, stem-branch characteristics and wood properties and their relationships to Eucalyptus urophylla clones. Silvae Genet. 4:219–231.Web of ScienceGoogle Scholar

  • Yanchuk, A., Sanchez, L. (2011) Multivariate selection under adverse genetic correlations: impacts of population sizes and selection strategies on gains and coancestry in forest tree breeding. Tree Genetics Genomes 7:1169–1183.Web of ScienceCrossrefGoogle Scholar

  • Zhang, P.D., Wu, F., Kang, X.Y. (2012) Genotypic variation in wood properties and growth traits of triploid hybrid clones of Populus tomentosa at three clonal trials. Tree Genetics Genomes 8:1041–1050.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, S.N., Jiang, J.M., Xu, Y.Q., Luan, Q.F. (2017) Study on the modulus of elasticity non-destructive evaluation technique of Slash pine standing tree. For. Res. 1:75–80.Google Scholar

  • Zobel, B.J., Buijtenen, J.P. Wood Variation, its Causes and Control. Springer-Verlag, Berlin, 1989. p. 363.Google Scholar

About the article

Received: 2019-02-22

Accepted: 2019-07-05

Published Online: 2019-07-26

Published in Print: 2019-12-18

Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 31860220

Funding Source: Jiangxi Province Science Foundation for Youth

Award identifier / Grant number: 20181BAB214015

Award identifier / Grant number: 20161BAB214176

Funding Source: National Key R&D Program of China

Award identifier / Grant number: 2017YFD0600502-5

This work was supported by the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, no. 31860220), Jiangxi Province Science Foundation for Youths (nos. 20181BAB214015 and 20161BAB214176) and National Key R&D Program of China (2017YFD0600502-5).

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 74, Issue 1, Pages 1–9, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0046.

Export Citation

©2020 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in