Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Volume 74, Issue 2


Lignin analysis with benchtop NMR spectroscopy

Jerk Rönnols / Ernesto Danieli / Hélène Freichels / Fredrik Aldaeus
Published Online: 2019-06-29 | DOI: https://doi.org/10.1515/hf-2018-0282


Benchtop nuclear magnetic resonance (NMR) spectroscopy is an emerging field with an appealing profile for industrial applications. The instrumentation offers the possibility to measure NMR spectra in situations where high-field NMR spectroscopy is considered too expensive or complicated. In this study, we investigated the scope and limitations of 1H NMR measurements on kraft lignins and black liquors at low magnetic field strengths (1.0 and 1.5 T). The ability to quantify different classes of compounds was investigated and found to be promising. NMR-based diffusion measurements were performed, with the aim of gaining insight into the molar mass of the lignins at hand. These measurements were fast, repeatable and in good agreement with established methods.

Keywords: benchtop NMR; black liquor; diffusion; lignin; NMR


  • Assemat, G., Gouilleux, B., Bouillaud, D., Farjon, J., Gilard, V., Giraudeau, P., Malet-Martino, M. (2018) Diffusion-ordered spectroscopy on a benchtop spectrometer for drug analysis. J. Pharm. Biomed. Anal. 160:268–275.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Bogun, B., Moore, S. (2017) 1H and 31P benchtop NMR of liquids and solids used in and/or produced during the manufacture of methamphetamine by the HI reduction of pseudoephedrine/ephedrine. Forensic Sci. Int. 278:68–77.PubMedCrossrefGoogle Scholar

  • Garver, T.M., Callaghan, P.T. (1991) Hydrodynamics of kraft lignins. Macromolecules 24:420–430.CrossrefGoogle Scholar

  • Gouilleux, B., Marchand, J., Charrier, B., Remaud, G.S., Giraudeau, P. (2018) High-throughput authentication of edible oils with benchtop ultrafast 2D NMR. Food Chem. 244:153–158.Web of SciencePubMedCrossrefGoogle Scholar

  • Höpfner, J., Ratzsch, K.-F., Botha, C., Wilhelm, M. (2018) Medium resolution 1H-NMR at 62 MHz as a new chemically sensitive online detector for size-exclusion chromatography (SEC-NMR). Macromol. Rapid Commun. 39:1700766.Web of ScienceCrossrefGoogle Scholar

  • Johnson, C.S. Jr. (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34:203–256.CrossrefGoogle Scholar

  • Killner, M.H.M., Garro Linck, Y., Danieli, E., Rohwedder, J.J.R., Blümich, B. (2015) Compact NMR spectroscopy for real-time monitoring of a biodiesel production. Fuel 139:240–247.Web of ScienceCrossrefGoogle Scholar

  • Killner, M.H.M., Danieli, E., Casanova, F., Rohwedder, J.J.R., Blümich, B. (2017) Mobile compact 1H NMR spectrometer promises fast quality control of diesel fuel. Fuel 203:171–178.Web of ScienceCrossrefGoogle Scholar

  • Li, W., Chung, H., Daeffler, C., Johnson, J.A., Grubbs, R.H. (2012) Application of 1H DOSY for facile measurement of polymer molecular weights. Macromolecules 45: 9595–9603.Web of ScienceCrossrefGoogle Scholar

  • Meyer, K., Kern, S., Zientek, N., Guthausen, G., Maiwald, M. (2016) Process control with compact NMR. Trends Anal. Chem. 83:39–52.Web of ScienceCrossrefGoogle Scholar

  • Montgomery, J.R.D., Bazley, P., Lebl, T., Westwood, N.J. (2019) Using fractionation and diffusion ordered spectroscopy to study lignin molecular weight. Chemistry Open 8:1–6.Google Scholar

  • Montgomery, J.R.D., Lancefield, C.S., Miles-Barrett, D.M., Ackermann, K., Bode, B.E., Westwood, N.J., Lebl, T. (2017) Fractionation and DOSY NMR as analytical tools: from model polymers to a technical lignin. ACS Omega 2:8466–8474.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Norgren, M., Lindström, B. (2000) Physico-chemical characterization of a fractionated kraft lignin. Holzforschung 54:528–534.CrossrefGoogle Scholar

  • Rönnols, J., Schweinebarth, H., Jacobs, A., Stevanic, J.S., Olsson, A.-M., Reimann, A., Aldaeus, F. (2015) Structural changes in softwood kraft lignin during nonoxidative thermal treatment. Nord. Pulp Pap. Res. J. 30:550–561.CrossrefGoogle Scholar

  • Rönnols, J., Jacobs, A., Aldaeus, F. (2017) Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements. Holzforschung 71: 563–570.Web of ScienceGoogle Scholar

  • Sjöström, E. (1977) The behavior of wood polysaccharides during alkaline pulping processes. Tappi 60: 151–154.Google Scholar

  • Stejskal, E.O., Tanner, J.E. (1965) Spin diffusion measurements: spin echoes in the presence of a time dependent field gradient. J. Chem. Phys. 42:288–297.CrossrefGoogle Scholar

  • Weber, S., Schrag, K., Mildau, G., Kuballa, T., Walch, S.G., Lachenmeier, D.W. (2018) Analytical methods for the determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) – a short review. Anal. Chem. Insights 13:1–16.Web of ScienceGoogle Scholar

  • Zinovyev, G., Sulaeva, I., Podzimek, S., Rössner, D., Kilpeläinen, I., Sumerskii, I., Rosenau, T., Potthast, A. (2018) Getting closer to absolute molar masses of technical lignins. ChemSusChem 11:3259–3268.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2018-11-30

Accepted: 2019-05-17

Published Online: 2019-06-29

Published in Print: 2020-02-25

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Altri, Ence, Fibria, Holmen, Mercer, Metsä Board, Metsä Fibre, SCA, Stora Enso, Södra and Valmet are gratefully acknowledged for the financial support and supply of black liquors.

Employment or leadership: None declared.

Honorarium: None declared.

Conflict of interest statement: The authors declare to have no conflict of interests.

Citation Information: Holzforschung, Volume 74, Issue 2, Pages 226–231, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0282.

Export Citation

© 2020 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in