Jump to ContentJump to Main Navigation
Show Summary Details
More options …


International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year

IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

See all formats and pricing
More options …
Volume 67, Issue 4 (May 2013)


Moisture-dependent orthotropic tension-compression asymmetry of wood

Tomasz Ozyhar / Stefan Hering
  • Institute for Building Materials (Computational Physics for Engineering Materials), ETH Zurich, 8093 Zurich, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Niemz
Published Online: 2012-12-08 | DOI: https://doi.org/10.1515/hf-2012-0089


The influence of moisture content (MC) on the tension-compression (Te-Co) asymmetry of beech wood has been examined. The elastic and strength parameters, including Te and Co Young’s moduli, Poisson’s ratios, and ultimate and yield stress values, were determined and compared in terms of different MCs for all orthotropic directions. The results reveal a distinctive Te-Co strength asymmetry with a moisture dependency that is visualized clearly by the Te to Co yield stress ratio. The Te-Co asymmetry is further shown by the inequality of the elastic properties, known as the “bimodular behavior”. The latter is proven for the Young’s moduli values in the radial and tangential directions and for individual Poisson’s ratios. Although the bimodularity of the Young’s moduli is significant at low MC levels, there is no evidence of moisture dependency on the Te-Co asymmetry of the Poisson’s ratios.

Keywords: bimodular behavior; moisture content; Poisson’s ratios; strength; tension-compression asymmetry; Young’s moduli


  • American Society for Testing and Materials (2011) ASTM-E8/E8M-11. Standard Test Methods for Tension Testing of Metallic Materials.Google Scholar

  • American Society for Testing and Materials (2007) ASTM-D442-92. Standard Test Methods for Direct Moisture Content Measurements of Wood and Wood-Base Materials.Google Scholar

  • Barak, M.M., Curreyb, J.D., Weinera, S., Shahar, R. (2009) Are tensile and compressive Young’s moduli of compact bone different? J. Mech. Behav. Biomed. 2:51–60.CrossrefGoogle Scholar

  • Benveniste, Y. (1985) The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mech. Mater. 4:197–208.CrossrefGoogle Scholar

  • Bertoldi, K., Bigoni, D., Drugan, W.J. (2008) Nacre: an orthotropic and bimodular elastic material. Compos. Sci. Technol. 68:1363–1375.CrossrefGoogle Scholar

  • Bodig, J., Jayne, B.A. Mechanics of Wood and Wood Composites. Krieger Publishing Co., Malabar, 1993.Google Scholar

  • Chahine, N.O., Wang, C.C., Hung, C.T., Ateshian, G.A. (2004) Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J. Biomech. 37:1251–1261.CrossrefGoogle Scholar

  • Conners, T.E., Medvecz, C.J. (1992) Wood as a bimodular material. Wood Fiber Sci. 24:413–423.Google Scholar

  • Curnier, A., He, Q., Zysset, P. (1995) Conewise linear elastic materials. J. Elast. 37:1–38.CrossrefGoogle Scholar

  • Destrade, M., Gilchrist, M.D., Motherway, J.A., Murphy, J.G. (2010) Bimodular rubber buckles early in bending. Mech. Mater. 42:469–476.CrossrefGoogle Scholar

  • Deutsches Institut für Normung e. V. (1976) 52 185 DIN 1976-09. Prüfung von Holz; Bestimmung der Druckfestigkeit parallel zur Faser.Google Scholar

  • Deutsches Institut für Normung e. V. (1979) 52 188 DIN 1979-05. Prüfung von Holz; Bestimmung der Zugfestigkeit parallel zur Faser.Google Scholar

  • Deutsches Institut für Normung e. V. (1979) 52 192 DIN 1979-05. Prüfung von Holz; Druckversuch quer zur Faser.Google Scholar

  • Feldman, L.A. (1987) Bimodular behaviour and crack closure in compression in a brittle material. J. Mater. Sci. 22:2789–2792.CrossrefGoogle Scholar

  • Gerhards, C.C. (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci. 14:4–36.Google Scholar

  • Gibson, L.J., Ashby, M.F. Cellular Solids. Structure and Properties. Pergamon Press, Oxford, 1988.Google Scholar

  • Goulet, M. (1960) Die Abhängigkeit der Querzugfestigkeit von Eichen, Buchen und Fichtenholz von Feuchtigkeit und Temperatur im Bereich von 0° bis 100°C. Holz Roh. Werkst. 18:325–331.CrossrefGoogle Scholar

  • Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand-A Phys. Chem. 81A:89–96.Google Scholar

  • Guo, Z., Zhang, X. (1987) Investigation of complete stress-deformation curves for concrete in tension. ACI Mater. J. 84:278–285.Google Scholar

  • Hering, S., Keunecke, D., Niemz, P. (2012a) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 45:927–938.CrossrefGoogle Scholar

  • Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M. (2012b) Characterisation of moisture-dependent plasticity of beech wood and its application to a multi-surface plasticity model. Holzforschung 66:373–380.Google Scholar

  • Hill, C.A.S., Norton, A.J., Newman, G. (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44:497–514.CrossrefGoogle Scholar

  • Jones, R.M. Deformation theory of plasticity. Bull Ridge Publishing, Blacksburg, VA, 2009.Google Scholar

  • Katicha, S.W., Flintsch, G., Loulizi, A. (2011) Bimodular analysis of hot-mix asphalt. Int. J. Road Mater. Pavement Design 11:917–946.Google Scholar

  • Kersavage, P.C. (1973) Moisture content effect on tensile properties of individual Douglas-fir latewood tracheids. Wood Fiber Sci. 5:105–117.Google Scholar

  • Keunecke, D., Hering, S., Niemz, P. (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Sci. Technol. 42:633–647.CrossrefGoogle Scholar

  • Kollmann, F. (1956) Untersuchungen über die Querzugfestigkeit der Hölzer. Forstwiss. Centralbl. 75:304–318.CrossrefGoogle Scholar

  • Kollmann, F.F.P., Cote, W.A. Principles of Wood Science and Technology. Springer-Verlag, Berlin, 1984.Google Scholar

  • Kretschmann, D.E., Green, D.W. (1996) Modelling moisture content-mechanical property relationships for clear southern pine. Wood Fiber Sci. 28:320–337.Google Scholar

  • Kufner, M. (1978) Elastizitätsmodul und Zugfestigkeit von Holz verschiedener Rohdichte in Abhängigkeit vom Feuchtigkeitsgehalt. Holz Roh. Werkst. 36:435–439.CrossrefGoogle Scholar

  • McBurney, R.S., Drow, J.T. (1962) The Elastic Properties of Wood: Young’s Moduli and Poisson’s Ratios of Douglas-Fir and Their Relations to Moisture Content. Forest Product Laboratory Report No. 1528-D, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Google Scholar

  • Neuhaus, F.H. (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Holz Roh. Werkst. 41:21–25.CrossrefGoogle Scholar

  • Niemz, P. Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co., Leinfelden-Echterdingen, 1993.Google Scholar

  • Östman, B.A.L. (1985) Wood tensile strength at temperatures and moisture contents simulating fire conditions. Wood Sci. Technol. 19:103–116.CrossrefGoogle Scholar

  • Ozyhar, T., Hering, S., Sanabria, S.J., Niemz, P. (2012a) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci. Technol. Online First, Doi: 10.1007/s00226-012-0499-2.CrossrefGoogle Scholar

  • Ozyhar, T., Hering, S., Niemz, P. (2012b) Moisture-dependent elastic and strength anisotropy of European beech wood in tension. J. Mater. Sci. 47:6141–6150.CrossrefGoogle Scholar

  • Raczkowski, J., Jakubów, S., Majchrzak, A. (1995) Zależność między wytrzymałością drewna na rozciąganie i ściskanie wzdłuż włókien. Wpływ wilgotności. Folia Forestalia Polonica B 26:151–159.Google Scholar

  • Resch, E., Kaliske, M. (2010) Three-dimensional numerical analyses of load-bearing behavior and failure of multiple double-shear dowel-type connections in timber engineering. Comput. Struct. 88:165–177.CrossrefGoogle Scholar

  • Ross, R.J. (Ed.) (2010) Wood Handbook: Wood as an Engineering Material. General Technical Report FPL-GTR 190, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.Google Scholar

  • Saft, S., Kaliske, M. (2011) Numerical simulation of the ductile failure of mechanically and moisture loaded wooden structures. Comput. Struct. 89:2460–2470.CrossrefGoogle Scholar

  • Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. COST Action E35 2004–2008: Wood machining – micromechanics and fracture. Holzforschung 63:121–129.Google Scholar

  • Sakagami, H., Matsumura, J., Oda, K. (2009) In situ visualization of hardwood microcracks occurring during drying. J. Wood Sci. 55:323–328.CrossrefGoogle Scholar

  • Schniewind, A.P., Barrett, J.D. (1972) Wood as a linear orthotropic viscoelastic material. Wood Sci. Technol. 6:43–57.CrossrefGoogle Scholar

  • Stamm, A.J. Wood and Cellulose Science. Ronald Press Co., New York, 1964.Google Scholar

  • Stevanic, J.S., Salmén, L. (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63: 497–503.Google Scholar

  • Stimpson, B., Chen, R. (1993) Measurement of rock elastic moduli in tension and in compression and its practical significance. Can. Geotech. J. 30:338–347.CrossrefGoogle Scholar

  • Takhashi, K., Chou, T.W. (1988) Transverse elastic moduli of undirectional fiber composites with interfacial debonding. Metall. Mater. Trans. A 19:129–135.CrossrefGoogle Scholar

  • Tiemann, H.D. (1906) Effect of moisture upon the strength and stiffness of wood. Forest Service Bulletin 70, U.S. Department of Agriculture.Google Scholar

  • Turovtsev, G.V., Toropov, V.V. (2005) Identification of Fiber Composite Interface Properties using Changes in Natural Frequencies, 6th World Congresses of Structural and Multidisciplinary Optimatization, Rio de Janeiro.Google Scholar

  • Winandy, J.E., Rowell, R.M. (2005) Chemistry of Wood Strength. In: Handbook of Wood Chemistry and Wood Composites. (Ed.) Rowell, R.M. CRC Press, Madison, WI. pp. 303–347.Google Scholar

  • Wommelsdorf, O. (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Technische Hochschule Hannover.Google Scholar

  • Zemlyakov, I.P. (1965) On the difference in the moduli of elasticity of polyamides subjected to different kinds of deformation. Mech. Compos. Mater. 1:25–27.Google Scholar

About the article

Corresponding author: Tomasz Ozyhar, Institute for Building Materials (Wood Physics), ETH Zurich, 8093 Zurich, Switzerland, Phone: +41 44 633 9179, Fax: +41 44 632 11774

Received: 2012-07-01

Accepted: 2012-10-31

Published Online: 2012-12-08

Published in Print: 2013-05-01

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0089.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Cihan Ciftci, Brian Kane, Sergio F. Brena, and Sanjay R. Arwade
Trees, 2014, Volume 28, Number 2, Page 517

Comments (0)

Please log in or register to comment.
Log in