Jump to ContentJump to Main Navigation
Show Summary Details

Rio, Jose C. / Laine, Christiane / Potthast, Antje / Takano, Toshiyuki / Theliander, Hans

Holzforschung

International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Tamminen, Tarja / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR increased in 2015: 1.711
5-year IMPACT FACTOR: 1.794
Rank 3 out of 21 in category Materials Science, Paper & Wood and 14 out of 66 in Forestry in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954
Impact per Publication (IPP) 2015: 1.427

Online
ISSN
1437-434X
See all formats and pricing
Volume 67, Issue 4 (May 2013)

Issues

Moisture-dependent orthotropic tension-compression asymmetry of wood

Tomasz Ozyhar
  • Corresponding author
  • Institute for Building Materials (Wood Physics), ETH Zurich, 8093 Zurich, Switzerland
  • Email:
/ Stefan Hering
  • Institute for Building Materials (Computational Physics for Engineering Materials), ETH Zurich, 8093 Zurich, Switzerland
/ Peter Niemz
  • Institute for Building Materials (Wood Physics), ETH Zurich, 8093 Zurich, Switzerland
Published Online: 2012-12-08 | DOI: https://doi.org/10.1515/hf-2012-0089

Abstract

The influence of moisture content (MC) on the tension-compression (Te-Co) asymmetry of beech wood has been examined. The elastic and strength parameters, including Te and Co Young’s moduli, Poisson’s ratios, and ultimate and yield stress values, were determined and compared in terms of different MCs for all orthotropic directions. The results reveal a distinctive Te-Co strength asymmetry with a moisture dependency that is visualized clearly by the Te to Co yield stress ratio. The Te-Co asymmetry is further shown by the inequality of the elastic properties, known as the “bimodular behavior”. The latter is proven for the Young’s moduli values in the radial and tangential directions and for individual Poisson’s ratios. Although the bimodularity of the Young’s moduli is significant at low MC levels, there is no evidence of moisture dependency on the Te-Co asymmetry of the Poisson’s ratios.

Keywords: bimodular behavior; moisture content; Poisson’s ratios; strength; tension-compression asymmetry; Young’s moduli

References

  • American Society for Testing and Materials (2011) ASTM-E8/E8M-11. Standard Test Methods for Tension Testing of Metallic Materials.

  • American Society for Testing and Materials (2007) ASTM-D442-92. Standard Test Methods for Direct Moisture Content Measurements of Wood and Wood-Base Materials.

  • Barak, M.M., Curreyb, J.D., Weinera, S., Shahar, R. (2009) Are tensile and compressive Young’s moduli of compact bone different? J. Mech. Behav. Biomed. 2:51–60. [Crossref]

  • Benveniste, Y. (1985) The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mech. Mater. 4:197–208. [Crossref]

  • Bertoldi, K., Bigoni, D., Drugan, W.J. (2008) Nacre: an orthotropic and bimodular elastic material. Compos. Sci. Technol. 68:1363–1375. [Crossref]

  • Bodig, J., Jayne, B.A. Mechanics of Wood and Wood Composites. Krieger Publishing Co., Malabar, 1993.

  • Chahine, N.O., Wang, C.C., Hung, C.T., Ateshian, G.A. (2004) Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J. Biomech. 37:1251–1261. [Crossref]

  • Conners, T.E., Medvecz, C.J. (1992) Wood as a bimodular material. Wood Fiber Sci. 24:413–423.

  • Curnier, A., He, Q., Zysset, P. (1995) Conewise linear elastic materials. J. Elast. 37:1–38. [Crossref]

  • Destrade, M., Gilchrist, M.D., Motherway, J.A., Murphy, J.G. (2010) Bimodular rubber buckles early in bending. Mech. Mater. 42:469–476. [Crossref]

  • Deutsches Institut für Normung e. V. (1976) 52 185 DIN 1976-09. Prüfung von Holz; Bestimmung der Druckfestigkeit parallel zur Faser.

  • Deutsches Institut für Normung e. V. (1979) 52 188 DIN 1979-05. Prüfung von Holz; Bestimmung der Zugfestigkeit parallel zur Faser.

  • Deutsches Institut für Normung e. V. (1979) 52 192 DIN 1979-05. Prüfung von Holz; Druckversuch quer zur Faser.

  • Feldman, L.A. (1987) Bimodular behaviour and crack closure in compression in a brittle material. J. Mater. Sci. 22:2789–2792. [Crossref]

  • Gerhards, C.C. (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci. 14:4–36.

  • Gibson, L.J., Ashby, M.F. Cellular Solids. Structure and Properties. Pergamon Press, Oxford, 1988.

  • Goulet, M. (1960) Die Abhängigkeit der Querzugfestigkeit von Eichen, Buchen und Fichtenholz von Feuchtigkeit und Temperatur im Bereich von 0° bis 100°C. Holz Roh. Werkst. 18:325–331. [Crossref]

  • Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand-A Phys. Chem. 81A:89–96.

  • Guo, Z., Zhang, X. (1987) Investigation of complete stress-deformation curves for concrete in tension. ACI Mater. J. 84:278–285.

  • Hering, S., Keunecke, D., Niemz, P. (2012a) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 45:927–938. [Crossref]

  • Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M. (2012b) Characterisation of moisture-dependent plasticity of beech wood and its application to a multi-surface plasticity model. Holzforschung 66:373–380.

  • Hill, C.A.S., Norton, A.J., Newman, G. (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44:497–514. [Crossref]

  • Jones, R.M. Deformation theory of plasticity. Bull Ridge Publishing, Blacksburg, VA, 2009.

  • Katicha, S.W., Flintsch, G., Loulizi, A. (2011) Bimodular analysis of hot-mix asphalt. Int. J. Road Mater. Pavement Design 11:917–946.

  • Kersavage, P.C. (1973) Moisture content effect on tensile properties of individual Douglas-fir latewood tracheids. Wood Fiber Sci. 5:105–117.

  • Keunecke, D., Hering, S., Niemz, P. (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Sci. Technol. 42:633–647. [Crossref]

  • Kollmann, F. (1956) Untersuchungen über die Querzugfestigkeit der Hölzer. Forstwiss. Centralbl. 75:304–318. [Crossref]

  • Kollmann, F.F.P., Cote, W.A. Principles of Wood Science and Technology. Springer-Verlag, Berlin, 1984.

  • Kretschmann, D.E., Green, D.W. (1996) Modelling moisture content-mechanical property relationships for clear southern pine. Wood Fiber Sci. 28:320–337.

  • Kufner, M. (1978) Elastizitätsmodul und Zugfestigkeit von Holz verschiedener Rohdichte in Abhängigkeit vom Feuchtigkeitsgehalt. Holz Roh. Werkst. 36:435–439. [Crossref]

  • McBurney, R.S., Drow, J.T. (1962) The Elastic Properties of Wood: Young’s Moduli and Poisson’s Ratios of Douglas-Fir and Their Relations to Moisture Content. Forest Product Laboratory Report No. 1528-D, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.

  • Neuhaus, F.H. (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Holz Roh. Werkst. 41:21–25. [Crossref]

  • Niemz, P. Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co., Leinfelden-Echterdingen, 1993.

  • Östman, B.A.L. (1985) Wood tensile strength at temperatures and moisture contents simulating fire conditions. Wood Sci. Technol. 19:103–116. [Crossref]

  • Ozyhar, T., Hering, S., Sanabria, S.J., Niemz, P. (2012a) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci. Technol. Online First, Doi: 10.1007/s00226-012-0499-2. [Crossref]

  • Ozyhar, T., Hering, S., Niemz, P. (2012b) Moisture-dependent elastic and strength anisotropy of European beech wood in tension. J. Mater. Sci. 47:6141–6150. [Crossref]

  • Raczkowski, J., Jakubów, S., Majchrzak, A. (1995) Zależność między wytrzymałością drewna na rozciąganie i ściskanie wzdłuż włókien. Wpływ wilgotności. Folia Forestalia Polonica B 26:151–159.

  • Resch, E., Kaliske, M. (2010) Three-dimensional numerical analyses of load-bearing behavior and failure of multiple double-shear dowel-type connections in timber engineering. Comput. Struct. 88:165–177. [Crossref]

  • Ross, R.J. (Ed.) (2010) Wood Handbook: Wood as an Engineering Material. General Technical Report FPL-GTR 190, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.

  • Saft, S., Kaliske, M. (2011) Numerical simulation of the ductile failure of mechanically and moisture loaded wooden structures. Comput. Struct. 89:2460–2470. [Crossref]

  • Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. COST Action E35 2004–2008: Wood machining – micromechanics and fracture. Holzforschung 63:121–129.

  • Sakagami, H., Matsumura, J., Oda, K. (2009) In situ visualization of hardwood microcracks occurring during drying. J. Wood Sci. 55:323–328. [Crossref]

  • Schniewind, A.P., Barrett, J.D. (1972) Wood as a linear orthotropic viscoelastic material. Wood Sci. Technol. 6:43–57. [Crossref]

  • Stamm, A.J. Wood and Cellulose Science. Ronald Press Co., New York, 1964.

  • Stevanic, J.S., Salmén, L. (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63: 497–503.

  • Stimpson, B., Chen, R. (1993) Measurement of rock elastic moduli in tension and in compression and its practical significance. Can. Geotech. J. 30:338–347. [Crossref]

  • Takhashi, K., Chou, T.W. (1988) Transverse elastic moduli of undirectional fiber composites with interfacial debonding. Metall. Mater. Trans. A 19:129–135. [Crossref]

  • Tiemann, H.D. (1906) Effect of moisture upon the strength and stiffness of wood. Forest Service Bulletin 70, U.S. Department of Agriculture.

  • Turovtsev, G.V., Toropov, V.V. (2005) Identification of Fiber Composite Interface Properties using Changes in Natural Frequencies, 6th World Congresses of Structural and Multidisciplinary Optimatization, Rio de Janeiro.

  • Winandy, J.E., Rowell, R.M. (2005) Chemistry of Wood Strength. In: Handbook of Wood Chemistry and Wood Composites. (Ed.) Rowell, R.M. CRC Press, Madison, WI. pp. 303–347.

  • Wommelsdorf, O. (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Technische Hochschule Hannover.

  • Zemlyakov, I.P. (1965) On the difference in the moduli of elasticity of polyamides subjected to different kinds of deformation. Mech. Compos. Mater. 1:25–27.

About the article

Corresponding author: Tomasz Ozyhar, Institute for Building Materials (Wood Physics), ETH Zurich, 8093 Zurich, Switzerland, Phone: +41 44 633 9179, Fax: +41 44 632 11774


Received: 2012-07-01

Accepted: 2012-10-31

Published Online: 2012-12-08

Published in Print: 2013-05-01


Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0089. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Cihan Ciftci, Brian Kane, Sergio F. Brena, and Sanjay R. Arwade
Trees, 2014, Volume 28, Number 2, Page 517
[2]
Tomasz Ozyhar, Stefan Hering, and Peter Niemz
Journal of Rheology, 2013, Volume 57, Number 2, Page 699

Comments (0)

Please log in or register to comment.
Log in