Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Holzforschung

International Journal of the Biology, Chemistry, Physics, and Technology of Wood

Editor-in-Chief: Faix, Oskar

Editorial Board Member: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Salmen, Lennart / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2016: 1.868
5-year IMPACT FACTOR: 1.875

CiteScore 2016: 1.83

SCImago Journal Rank (SJR) 2015: 0.817
Source Normalized Impact per Paper (SNIP) 2015: 0.954

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 67, Issue 4 (May 2013)

Issues

Measuring the thermal properties of green wood by the transient plane source (TPS) technique

Anna Dupleix
  • Corresponding author
  • Arts et Metiers ParisTech LaBoMaP, Rue Porte de Paris, F-71250 Cluny, France
  • Department of Forest Products Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Kusiak / Mark Hughes
  • Department of Forest Products Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fréderic Rossi
Published Online: 2012-11-23 | DOI: https://doi.org/10.1515/hf-2012-0125

Abstract

The thermal properties of wood in the green state have been determined by the transient plane source (TPS) technique. Data are presented on thermal conductivity (λ), heat capacity (C), and thermal diffusivity (κ) at moisture contents (MCs) above the fiber saturation point, which are based on measurements using the HotDisk® apparatus. Four wood species (Douglas fir, beech, birch, and spruce) were tested, and the results are compared with literature data and those obtained by the flash method. A linear relationship was found between the thermal properties λ, C, and κ on the one hand and MC on the other. Equations predicting the thermal values as a function of MC and wood anisotropy are presented. Wood C and λ increase with MC, but wet wood diffuses heat more rapidly than dry wood.

Keywords: green wood; heat capacity; HotDisk®; thermal conductivity; thermal diffusivity; transient plane source (TPS)

References

  • Beluche, G. Modélisation numérique et développement d’un système expérimental de la diffusivité et de la transmission infrarouge. Arts et Metiers ParisTech, Cluny, France, 2011 (in French).Google Scholar

  • Bučar, B., Straže, A. (2008) Determination of the thermal conductivity of wood by the hot plate method: the influence of morphological properties of fir wood (Abies alba Mill.) to the contact thermal resistance. Holzforschung 62:362–367.Web of ScienceGoogle Scholar

  • Dupleix, A., Ould Ahmedou, S.A., Bleron, L., Rossi, F., Hughes, M. (2012) Rational production of veneer by IR-heating of green wood during peeling: modeling experiments. Holzforschung 67:53–58.Web of ScienceGoogle Scholar

  • Gustafsson, S.E. (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62:797–804.CrossrefGoogle Scholar

  • Gustavsson, M., Gustavsson, J.S., Gustafsson, S.E., Halldahl, L. (2000) Recent developments and applications of the hot disk thermal constants analyser for measuring thermal transport properties of solids. High Temp. – High Press. 32:47–52.Google Scholar

  • Harada, T., Hata, T., Ishihara, S. (1998) Thermal constants of wood during the heating process measured with the laser flash method. J. Wood Sci. 44:425–431.Google Scholar

  • Incropera, F.P., Bergman, T.L., Lavine, A.S., DeWitt, D.P. Fundamentals of Heat and Mass Transfer. Wiley, 2011. p. 940.Google Scholar

  • ISO standard (1991) ISO 8302. Thermal insulation – determination of steady-state thermal resistance and related properties – guarded hot plate apparatus.Google Scholar

  • Jia, D., Afzal, M.T., Gongc, M., Bedane, A.H. (2010) Modeling of moisture diffusion and heat transfer during softening in wood densification. Int. J. Eng. 4:191–200.Google Scholar

  • Kollmann, F.F.P., Côté, W.A. Principles of Wood Science. I – Solid Wood. Springer-Verlag, New York, NY, 1968.Google Scholar

  • Koumoutsakos, A., Avramidis, S., Hatzikiriakos, S.G. (2001) Radio frequency vacuum drying of wood. I. Mathematical model. Dry. Technol. 19:65–84.CrossrefGoogle Scholar

  • Olek, W., Weres, J., Guzenda, R. (2003) Effects of thermal conductivity data on accuracy of modeling heat transfer in wood. Holzforschung 57:317–325.Google Scholar

  • Rohsenow, W., Hartnett, J., Ganic, E. Handbook of Heat Transfer Fundamentals. McGraw-Hill Book Company, New York, NY, 1973.Google Scholar

  • Siau, J.F. Flow in Wood. Syracuse University Press, Syracuse, NY, 1971.Web of ScienceGoogle Scholar

  • Siau, J.F. Wood: Influence of Moisture on Physical Properties. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1995.Google Scholar

  • Simpson, W., TenWolde, A. (1999) Physical properties and moisture relations of wood. In: Wood Handbook – Wood as an Engineering Material, Chapter 3, Forest Products Laboratory, Madison, WI. pp. 15–20.Google Scholar

  • Sonderegger, W., Hering, S., Niemz, P. (2011) Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 65: 369–375.Web of ScienceGoogle Scholar

  • Speyer, R.F. Thermal Analysis of Materials. Marcel Dekker, New York, NY, 1994.Google Scholar

  • Steinhagen, H.P. Thermal Conductive Properties of Wood, Green or Dry, from -40° to +100°C: A Literature Review. Forest Products Laboratory, Madison, WI, 1977.Google Scholar

  • Suleiman, B.M., Larfeldt, J., Leckner, B., Gustavsson, M. (1999) Thermal conductivity and diffusivity of wood. Wood Sci. Technol. 33:465–473.Google Scholar

About the article

Corresponding author: Anna Dupleix, Arts et Metiers ParisTech LaBoMaP, Rue Porte de Paris, F-71250 Cluny, France, Phone: +33 3 85 59 53 27, Fax: +33 3 85 59 53 85.


Received: 2012-07-25

Accepted: 2012-10-23

Published Online: 2012-11-23

Published in Print: 2013-05-01


Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2012-0125.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in