Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 70, Issue 8

Issues

Thermo-hydro treated (THT) birch veneers for producing plywood with improved properties

Juris Grinins / Bruno Andersons / Ilze Irbe / Ingeborga Andersone / Anete Meija-Feldmane / Anna Janberga / Gunars Pavlovics / Errj Sansonetti
Published Online: 2016-01-28 | DOI: https://doi.org/10.1515/hf-2015-0155

Abstract

The effect of thermo-hydro treatment (THT) on the properties of birch (Betula spp.) wood veneers has been studied. THT was carried out in a multi-functional pilot scale wood modification device of wood treatment technology (WTT, Latvia) under elevated water vapor pressure conditions at four combinations of temperature and treatment time (°C/min): 150/10; 150/50; 160/10 and 160/50. After THT, the following veneer properties were examined: mass loss (ML), chemical composition, bending strength (BS), tensile strength (TS), equilibrium moisture content (EMC), resistance to decay by mould and blue stain fungi, and surface contact angle (CA). The chemical components were changed by THT. Increased THT temperature and time resulted in hydrophobization of veneers as indicated by decreasing EMC and increasing CA data. All THT were effective against wood discoloring fungi, although insufficient decay resistance was observed. The mechanical strength properties of THT veneers were also deteriorated.

Keywords: birch; chemical composition; durability; strength; thermo-hydro treatment (THT); veneer

References

  • Alén, R., Kotilainen, R., Zaman A. (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225°C. Wood Sci. Technol. 36:163–171.Google Scholar

  • Andersons, B., Andersone, I., Biziks, V., Irbe, I., Chirkova, J., Sansonetti, E., Grinins, J., Militz, H. (2010) Hydrothermal modification for upgrading the durability properties of soft deciduous wood. The International Research Group on Wood Protection. Document No. IRG/WP/40494.Google Scholar

  • Andersons, B., Noldt, G., Koch, G., Andersone, I., Meija-Feldmane, A., Biziks, V., Irbe, I., Grinins, J. (2016) Scanning UV microspectrophotometry as a tool to study the changes of lignin in hydrothermally modified wood. Holzforschung 70:215–221Web of ScienceGoogle Scholar

  • Bekhta, P., Niemz, P. (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546.Google Scholar

  • Bekhta, P., Hiziroglu, S., Shepelyuk, O. (2009) Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 30:947–953.Web of ScienceGoogle Scholar

  • Bhuiyan, T., Hirai, N. (2000). Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 51:42–47.Google Scholar

  • Biziks, V., Andersons, B., Sansonetti, E., Andersone, I., Militz, H., Grinins, J. (2015). One-stage thermo-hydro treatment (THT) of hardwoods: an analysis of form stability after five soaking-drying cycles. Holzforschung 69:563–573.Web of ScienceGoogle Scholar

  • Biziks, V., Van den Bulcke, J., Grinins, J., Militz, H., Andersons, B., Andersone, I., Dhaene, J., Van Acker, J. (2016) Assessment of wood microstructural changes after one-stage thermo-hydro treatment (THT) by micro X-ray computed tomography. Holzforschung 70:167–177.Web of ScienceGoogle Scholar

  • Boonstra, M.J., Tjeerdsma, B.F. (2006) Chemical analysis of heat treated softwood. Holz als Roh-Werkst. 64:204–221.Google Scholar

  • Boonstra, M.J., Van Acker, J., Tjeerdsma, B.F., Kegel, E.V. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 64:679–690.Google Scholar

  • Browning, B.L. Methods of Wood Chemistry, vol. 1. Wiley, New York, 1967.Google Scholar

  • Büyüksari, Ü., Hiziroglu, S., Akkilic, H., Ayrilmis, N. (2012) Mechanical and physical properties of medium density fiberboard panels laminated with thermally compressed veneer. Compos. Part B-Eng. 43:110–114.Google Scholar

  • Dieste, A., Krause, A., Bollmus, S., Militz, H. (2009) Gluing ability of plywood produced with DMDHEU-modified veneers of Fagus sp., Betula sp., and Picea sp. Int. J. Adhes. Adhes. 29:206–209.Web of ScienceGoogle Scholar

  • Diouf, P.N, Stevanovic, T., Cloutier, A., Fang, C.H., Blanchet, P., Koubaa, A., Mariotti, N. (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Applied Surface Sci. 257:3558–3564.Web of ScienceGoogle Scholar

  • Ermeydan, M.A., Cabane, E., Masic, A., Koetz, J., Burgert, I. (2012) Flavonoid insertion into cell walls improves wood properties. ACS Appl. Mater. Interfaces. 4:5782–5789.Web of ScienceGoogle Scholar

  • Esteves, B., Pereira, H.M. (2009) Wood modification by heat treatment: a review. Bioresources 4:370–404.Google Scholar

  • Grinins, J., Andersons, B., Biziks, V., Andersone, I., Dobele, G. (2013) Analytical pyrolysis as an instrument to study the chemical transformations of hydrothermally modified wood. J. Anal. Appl. Pyrol. 103:36–41.Web of ScienceGoogle Scholar

  • Gusse, A.C., Miller, P.D., Volk, T.J. (2006) White-rot fungi demonstrate first biodegradation of phenolic resin. Environ. Sci. Technol. 40:4196–4199.Google Scholar

  • Herrera, R., Erdocia, X., Llano-Ponte, R., Labidi, J. (2014) Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. J. Anal. Appl. Pyrol. 107:256–266.Web of ScienceGoogle Scholar

  • Hon, D.N.-S., Shiraishi, N. Wood and Cellulosic Chemistry, Second Edition, Revised and Expanded. Edited by CRC Press, Marcel Dekker Inc., New York, Basel, 2000.Google Scholar

  • Irbe, I., Elisashvili, V., Asatiani, M.D., Janberga, A., Andersone, I., Andersons, B., Biziks, V., Grinins, J. (2014) Lignocellulolytic activity of Coniophora puteana and Trametes versicolor in fermentation of wheat bran and decay of hydrothermally modified hardwoods. Int. Biodeter. Biodegr. 86:71–78.Google Scholar

  • Kocaefe, D., Poncsak, S., Boluk, Y. (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 3:517–537.Google Scholar

  • Korkut, S., Mehmet, A., Turker, D. (2008) The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technol. 99:1861–1868.Google Scholar

  • Meile, K., Zhurinsh, A., Spince, B. (2014) Aspects of periodate oxidation of carbohydrates for the analysis of pyrolysis liquids. J. Carbohyd. Chem. 33:105–116.Web of ScienceGoogle Scholar

  • Militz, H. (2002) Heat treatment of wood: european processes and their background. The International Research Group on Wood Protection. Document No. IRG/WP 02-4024.Google Scholar

  • Nuopponen, M., Vuorinen, T., Jämsä, S., Viitaniemi, P. (2004) Thermal modification of softwood studied by FT-IR and UV resonance Raman spectroscopies. J. Wood Chem. Technol. 24:13–26.Google Scholar

  • Pecina, H., Paprzycki, O. (1988) Wechselbeziehungen zwischen der Temperaturbehandlung des Holzes und seiner Benetzbarkeit. Holzforsch. Holzverw. 40:5–8.Google Scholar

  • Scouse, A., Kamke, F.A., Morrell, J.J. (2015) Potential for using essential oils to protect viscoelastic thermal compression–treated hybrid poplar. Forest Prod. J. 65:93–99.Web of ScienceGoogle Scholar

  • Sundqvist, B., Morén, T. (2002). The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. Holz Roh-Werkst. 60:375–376.Google Scholar

  • Tjeerdsma, B., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz Roh-Werkst. 56:149–153.Google Scholar

  • Trey, S.M., Netrval, J., Berglund, L., Johansson, M. (2010) Electron-beam-initiated polymerization of poly(ethylene glycol)-based wood impregnants. ACS Appl. Mater. Interfaces 2:3352–3362.Web of ScienceGoogle Scholar

  • Welzbacher, C.R., Brischke, C., Rapp, A.O. (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater. Sci. Eng. 2:66–76.Google Scholar

  • Welzbacher, C.R., Wehsener, J., Rapp, A.O., Haller, P. (2008) Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale-Dimensional stability and durability aspects. Holz Roh-Werkst. 66:39–49.Web of ScienceGoogle Scholar

  • Wikberg, H., Maunu, S. (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 58:461–466.Google Scholar

  • Yildiz, S., Gezer, E.D., Yildiz, U.C. (2006) Mechanical and chemical behaviour of spruce wood modified by heat. Build. Environ. 41:1762–1766.Google Scholar

  • Zaman, A., Alén, R., Kotilainen, R. (2000) Heat behavior of Pinus sylvestris and Betula pendula at 200°C–230°C. Wood Fiber Sci. 32(2): 138–143.Google Scholar

About the article

Corresponding author: Juris Grinins, Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia, e-mail:


Received: 2015-07-10

Accepted: 2015-12-10

Published Online: 2016-01-28

Published in Print: 2016-08-01


Citation Information: Holzforschung, Volume 70, Issue 8, Pages 739–746, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2015-0155.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J. Grinins, I. Irbe, B. Andersons, I. Andersone, A. Meija-Feldmane, A. Janberga, G. Pavlovics, and E. Sansonetti
International Wood Products Journal, 2016, Volume 7, Number 4, Page 181

Comments (0)

Please log in or register to comment.
Log in