Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 70, Issue 10


Interaction between secondary phloem and xylem in gravitropic reaction of lateral branches of Tilia cordata Mill. trees

Urszula Zajączkowska
  • Corresponding author
  • Department of Forest Botany, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Kozakiewicz
  • Division of Wood Science and Wood Protection, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/hf-2015-0230


The tension wood (TW) of Tilia cordata (lime tree) does not contain gelatinous fibers. Based on anatomical studies of secondary phloem (secPhl) and xylem by means of microscopy, digital imaging, and biomechanical tests, it was hypothesized that there is an interaction between the phloem and xylem as a response of gravitropic forces on lateral branches. The goal of the present study was to check this hypothesis. The results demonstrated that dilated phloem rays are longer and wider on the upper side (US) of a branch compared to the lower side (LS) and that the ratio of fiber/ray parenchyma in the phloem is lower on the US of the branches. Bark strips consisting of secPhl with periderm have higher elastic modulus (MOE) on the US of branches. The results support the hypothesis that the compression stress of ray parenchyma may cause phloem fibers to stretch, which may result in the development of axial tensile stresses that are higher on the US of branches. However, the wider rings of xylem formed on the US of branches and the results of biomechanical tests can be interpreted that a higher MOE of wood in the US of lateral branch are the main factors responsible for gravitropic reaction of Tilia branches. TW can be considered as a kind of biotensegrity.

Keywords: biotensegrity; dilating rays; eccentric growth; gravitropic response; phloem fibers; ray parenchyma; reaction wood; secondary phloem; tension wood; Tilia cordata


  • Almeras, T., Thibaut, A., Grill, J. (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19:457–467.Google Scholar

  • Altaner, C., Hapca, A., Knox, J.P., Jarvis, M.C. (2007) Detection of β-1-4-galactan in compression wood of Sitka spruce [Picea sitchensis (Bong.) Carrière] by immunofluorescence. Holzforschung 61:311–316.Google Scholar

  • Böhlmann, D. (1971) Zugbast bei Tilia cordata Mill. Holzforschung 25:1–4.Google Scholar

  • Clair, B., Ruelle, J., Beauchene, J., Prevost, M.F., Fournier Djimbi, M. (2006). Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of the G-layer. IAWA J. 27:329–333.Google Scholar

  • Clair, B., Almeras, T., Pilate, G., Jullien, D., Sugiyama, J., Riekel, C. (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol. 155:562–570.Google Scholar

  • Davis, J.D., Evert, R.F. (1970) Seasonal cycle of phloem development in woody vines. Bot. Gaz. 131:128–138.Google Scholar

  • Eggert, D.A., Gaunt, D.D. (1973) Phloem of Sphenophyllum. Am. J. Bot. 60:755–770.Google Scholar

  • Esau, K. (1939) Development and structure of the phloem tissue. Bot. Rev. 5:373–432.Google Scholar

  • Esau, K., Cheadle, V.I., Gifford, E.M. (1953) Comparative structure and possible trends of specialization of the phloem. Amer. J. Bot. 40:9–19.Google Scholar

  • Evert, R.F., Eschrich, W., Medler, J.T., Alfieri, F.J. (1968) Observations on penetration of linden branches by stylets of the Aphid Longistigmacaryae. Am. J. Bot. 55:860–874.Google Scholar

  • Golwala, D.K., Patel, L.D. (2009) Pharmacognostical studies of Bauhinia variegata Linn root. J. Young Pharmacists 1:36–41.Google Scholar

  • Holdheide, W. (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Handbuch der Mikroskopie in der Technik. Ed. Freund, H. Umschau Verlag, Frankfurt a. M., pp. 195–367.Google Scholar

  • Ingber, D.E. (2003a) Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173.Google Scholar

  • Ingber, D.E. (2003b) Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116:1397–1408.Google Scholar

  • Kasprowicz, A., Smolarkiewicz, M., Wierzchowiecka, M., Michalak, M., Wojtaszek, P. (2011) Introduction: tensegral world of plants. In: Mechanical Integration of Plant Cells and Plants. Signalling Communication in Plants 9. Ed. Wojtaszek, P. Springer, Heidelberg, pp. 1–25.Google Scholar

  • Lehringer, C., Gierlinger, N., Koch, G. (2008) Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Holzforschung Band 62:255–263.Google Scholar

  • Machado, S.R., Marcati, C.R., DeMorretes, B.L., Angyalossy, V. (2005) Comparative bark anatomy of root and stem in Styrax camporum (Styracaceae). IAWA J. 26:477–487.Google Scholar

  • Mauseth, J.D. (1999) Anatomical adaptations to xeric conditions in Maihuenia (Cactaceae), a relictual, leaf-bearing cactus. J. Plant Res. 112:307–315.Google Scholar

  • Maynard, B.K., Bassuk, N.L. (1996) Effects of stock plant etiolation, shading, banding, and shoot development on histology and cutting propagation of Carpinus betulus L. fastigiata. J. Am. Soc. Hort. Sci. 121:853–860.Google Scholar

  • Nagawa, K., Yoshinaga, A., Takabe, K. (2012) Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods. Ann. Bot. 110:897–904.Google Scholar

  • Nanayakkara, B., Lagane, F., Hodgkiss, P., Dibley, M., Smaill, S., Riddell, M., Harrington, J., Cown, D. (2014) Effects of induced drought and tilting on biomass allocation, wood properties, compression wood formation and chemical composition of young Pinus radiata genotypes (clones). Holzforschung 68:455–465.Google Scholar

  • Niklas, K.J., Molina-Freaner, F., Tinoco-Ojanguren, C., Paolillo, D.J. (2002) The biomechanics of Pachycereus pringlei root systems. Am. J. Botany 89:12–21.Google Scholar

  • Nishikubo, N., Avano, T., Banasiak, A., Bourquin, V., Ibatullin, F., Funada, R., Brumer, H., Teeri, T.T., Hayashi, T., Sundberg, B., Mellerowicz, E.J. (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar – a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol. 48:843–855.Google Scholar

  • Okuyama, T., Yamamoto, H., Yoshida, M., Hattori, Y., Archer, R.R. (1994) Growth stresses in tension wood: role of microfibrils and lignification. Ann. For. Sci. 51:291–300.Google Scholar

  • Onaka, F. (1949) Studies on compression- and tension wood. Wood Res. 1:1–88.Google Scholar

  • Roussel, J.-R., Clair, B. (2015) Evidence of the late lignification of the G-layer in Simarouba tension wood to assist understanding how non-G-layer species produce tensile stress. Tree Physiol. 35:1366–1377.Google Scholar

  • Schneider, H. (1955) Ontogeny of lemon tree bark. Amer. J. Bot. 42:893–905.Google Scholar

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–682.Google Scholar

  • Şen, A., Quilho, T., Pereira, H. (2011) Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turkish J. Bot. 35:45–55.Google Scholar

  • Sharma, M., Altaner, C. (2014) Properties of young Araucaria heterophylla (Norfolk Island pine) reaction and normal wood. Holzforschung 68:817–821.Google Scholar

  • Shirai, T., Yamamoto, H., Matsuo, M., Inatsugu, M., Yoshida, M., Sato, S., Sujan, K.C., Suzuki, Y., Toyoshima, I., Yamashita, N. (2016) Negative gravitropism of Ginkgo biloba: growth stress and reaction wood formation. Holzforschung 70:267–274.Google Scholar

  • Stevenson, J.F., Matthews, M.A., Rost, T.L. (2005) The developmental anatomy of Pierce’s disease symptoms in grapevines: green islands and matchsticks. Plant Disease 89:543–548.Google Scholar

  • Timell, T.E. Compression Wood in Gymnosperms. Springer, Berlin, 1986.Google Scholar

  • Tomlinson, P.B. (2001) Reaction tissues in Gnetum gnemon: a preliminary report. IAWA J. 22:401–413.Google Scholar

  • Tomlinson, P.B. (2003) Development of gelatinous (reaction) fibers of Gnetum gnemon (Gnetales). Amer. J. Bot. 90:965–972.Google Scholar

  • Wilson, B.F., Archer, R.R. (1977). Reaction wood: induction and mechanical action. Ann. Rev. Plant Physiol. 28:23–43.Google Scholar

  • Ying-Shan, H., Shiang-Jiuun, C., Chin-Mei, L., Ling-Long, K.-H. (2005) Anatomical characteristics of the secondary phloem in branches of Zelkova serrata Makino. Botanical Bull. Acad. Sinica 46:143–149.Google Scholar

List of standards

  • ISO 13061-2:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 2: Determination of density for physical and mechanical tests.Google Scholar

  • ISO 13061-4:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 4: Determination of modulus of elasticity in static bending.Google Scholar

  • ISO 13061-6:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 6: Determination of ultimate tensile stress parallel to grain.Google Scholar

  • ISO 4858:1982 Wood – Determination of volumetric shrinkage. (ISO/DIS 13061-14 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 14: Determination of volumetric shrinkage).Google Scholar

About the article

Corresponding author: Urszula Zajączkowska, Department of Forest Botany, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776 Warsaw, Poland, e-mail:

Received: 2015-10-25

Accepted: 2016-02-17

Published Online: 2016-03-30

Published in Print: 2016-10-01

Citation Information: Holzforschung, Volume 70, Issue 10, Pages 993–1002, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2015-0230.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bruno Clair, Barbara Ghislain, Jonathan Prunier, Romain Lehnebach, Jacques Beauchêne, and Tancrède Alméras
New Phytologist, 2018

Comments (0)

Please log in or register to comment.
Log in