Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 3

Issues

Premature failure of utility poles in Switzerland and Germany related to wood decay basidiomycetes

Javier Ribera
  • Corresponding author
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials, Bio-engineered Wood, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
  • Albert-Ludwigs-Universität Freiburg, Professur für Forstbotanik, Bertoldstrasse 17, D-79085 Freiburg i. Br., Germany, Phone: +41 58 765 7607
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark Schubert
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials, Bio-engineered Wood, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Siegfried Fink
  • Albert-Ludwigs-Universität Freiburg, Professur für Forstbotanik, Bertoldstrasse 17, D-79085 Freiburg i. Br., Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Cartabia
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials, Bio-engineered Wood, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francis W.M.R. Schwarze
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials, Bio-engineered Wood, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
  • Albert-Ludwigs-Universität Freiburg, Professur für Forstbotanik, Bertoldstrasse 17, D-79085 Freiburg i. Br., Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-05 | DOI: https://doi.org/10.1515/hf-2016-0134

Abstract

In contact with soil, copper (Cu) formulations as preservatives are expected to inhibit wood decay by fungi and other soil-borne microorganisms. However, Cu-resistant brown-rot (BR) fungi lead to premature failures of utility poles at some sites. In this study, the service lives of 111 utility poles of Norway spruce (Picea abies (L.) H. Karst) (73 from Switzerland and 38 from Germany) impregnated with Cu-based wood preservatives were investigated. Three segments of each utility pole were analyzed. The severity of decay was dependent on the preservative formulation. BR fungi and in particular Antrodia species were predominantly isolated from utility poles that were not treated with a co-biocide, e.g. boron (B). Cu-sensitivity of several isolated BR fungi was confirmed in studies on Cu-amended medium and in Cu-treated wood. Isolates of Fibroporia vaillantii and Serpula himantioides showed a higher Cu-tolerance than the highly Cu-tolerant Empa isolate Rhodonia placenta (Empa 45) or Antrodia serialis.

Keywords: Antrodia serialis; Cu-based wood preservatives; Fibroporia vaillantii; field tests; Rhodonia placenta; Serpula himantioides; wood poles (WPs)

References

  • Arantes, V., Jellison J., Goodell, B. (2012) Peculiarities of brown rot fungi and the biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. App. Microbiol. Biotechnol. 94:323–338.Google Scholar

  • Arantes, V., Goodell, B. (2014) Current understanding of brown rot fungal biodegradation mechanisms: a review. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. ACS Publication, USA. pp. 3–21.Google Scholar

  • AWPA. (1999) American Wood Preservers’ Association Book of Standards. American Wood Preservers’ Association, Grandbury, TX, USA.Google Scholar

  • Baum, S., Sieber, T.N., Schwarze, F.W.M.R., Fink, S. (2003) Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycol. Prog. 2:141–148.Google Scholar

  • Bolin, C.A., Smith S.T. (2011) Life cycle assessment of pentachlorophenol-treated wooden poles with comparisons to steel and concrete utility poles. Renew. Sust. Energy Rev. 15:2475–2486.Google Scholar

  • Bollmus, S., Rangno, N., Militz, H., Gellerich, A. (2012) Analyses of premature failure of utility poles. International Research Group on Wood Protection, p. 9. IRG/WP12-40584.

  • Cervantes, C., Gutierrez-Corona, F. (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14:121–138.Google Scholar

  • Civardi, C., Schubert, M., Fey, A., Wick, P., Schwarze, F. (2015a) Micronized copper wood preservatives: efficacy of ion, nano and bulk copper against the brown rot fungus Rhodonia placenta. PLoS One 10:e0142578.Google Scholar

  • Civardi, C., Schwarze, F., Wick, P. (2015b) Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environ. Pollut. 200:126–132.Google Scholar

  • Collet, O. (1992) Comparative tolerance of the brown rot fungus Antrodia vaillantii (DC.:Fr) Ryv. Isolates to copper. Holzforschung 46:293–298.Google Scholar

  • Daniel, G. (2014) Fungal and bacterial biodegradation: white rots, brown rots, soft rots and bacteria. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T.P., Goodell, B., Nicholas, D.D. ACS Publication, USA. pp. 23–58.Google Scholar

  • De Groot, R.C., Woodwards, B. (1999) Using copper-tolerant fungi to biodegrade wood treated with copper-based preservatives. Int. Biodeterior. Biodegrad. 44:17–27.Google Scholar

  • Duncan, C.G., Lombard, E.F. (1965) Fungi associated with principal decays in wood products in the United States. USDA Forest Serv., Forest Prod. Lab. Report No. WO-4. Madison, WI.

  • EN 113 (1996) Wood preservatives – test method for determining the protective effectiveness against wood destroying basidiomycetes: determination of toxic values. European Committee for Standardization (CEN), Brussels, Belgium.Google Scholar

  • EN 335-1 (1992) Hazard classes of wood and wood-based products against biological attack. Classification of hazard classes. British Standard Institution (BSI), London, United Kingdom.Google Scholar

  • EN 460 (1994) Durability of wood and wood-based products. Natural durability of solid wood. Guide to the durability requirements for wood to be used in hazard classes. British Standard Institution (BSI), London, United Kingdom.Google Scholar

  • Eslyn, W.E. (1970) Utility pole decay. Part II: basidiomycetes associated with decay in poles. Wood Sci. Tech. 4:97–103.Google Scholar

  • European Directive 98/8/EG (1998). Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. Official Journal of the European Communities. L123:1–63.Google Scholar

  • Freeman, M., McIntyre, C. (2008) A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. Forest Prod. J. 58:6–27.Google Scholar

  • Freitag, C., Morrell, J.J., Love, C.S. (2011) Long-term performance of fused borate rods for limiting internal decay in Douglas-fir utility poles. Holzforschung 65:429–434.Google Scholar

  • Gadd, G.M. (2007) Fungi and industrial pollutants. In: Environmental and Microbial Relationships, Vol. IV. Eds. Kubicek, C.P., Druzhinina, I.S. Springer-Verlag, Berlin-Heidelberg. pp. 69–84.Google Scholar

  • Green, F., Clausen, C.A. (2003) Copper tolerance of brown rot fungi: time course of oxalic acid production. Int. Biodeterior. Biodegrad. 51:145–149.Google Scholar

  • Hach A., Schwarze F.W.M.R. (2016) Schweizerisches Holzschutzmittelverzeichnis. Bundesamt für Umwelt (BAFU). Bern, Switzerland. pp. 124–125.Google Scholar

  • Häger, B., Johnson, G.C., Thornton, J.D., Gardner, W.D. (2001) The Condition, after 31 Years Exposure, of Pine Stakes Treated with Ammoniacal Copper-Based Preservatives. Holzforschung 55:163–170.Google Scholar

  • Hopkins, A.J.M., Harrison, K.S., Grove, S.J., Wardlaw, T.J., Mohammed, C.L. (2005) Wood-decay fungi and saproxylic beetles associated with living Eucalyptus oblique trees: early results from studies at the Warra LTER site, Tasmania. Tas. Forest. 16:111–126.Google Scholar

  • Huckfeldt, T., Schmidt, O. (2006) Identification key for European strand-forming house-rot fungi. Mycologist 20:42–56.Google Scholar

  • Hughes, A. (2004) The tools at our disposal. Final Workshop COST Action E22 “Environmental optimization of Wood Protection”, 22nd and 23rd March 2004; Lisboa, Portugal. p. 11.

  • Hughes, M.N., Poole, R. K. (1989) Metals and Micro-organisms. Chapman & Hall Mehta, London.Google Scholar

  • Humar, M., Zlindra, D., Pohleven, F. (2007) Improvement of fungicidal properties and copper fixation of copper–ethanolamine wood preservatives using octanoic acid and boron compounds. Holz Roh Werkst. 65:17–21.Google Scholar

  • Janzen, S., Nicholas, D.D. (2016) Relation of transverse compression properties and the degree of brown rot biodeterioration of Pinus glabra in the soil block test. Holzforschung 70:1067–1071.Google Scholar

  • Kartal, S.N., Terzi, E., Yilmaz, H., Goodell, B. (2015) Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int. Biodeterior. Biodegrad. 99:95–101.Google Scholar

  • Kües, U., Mai, C., Militz, H. (2007) “Biological wood protection“. In: Wood Production, Wood Technology, and Biotechnological Impacts. Ed. Kües, U. Universitätsverlag Göttingen, Göttingen. pp. 273–288.Google Scholar

  • Leithoff, H., Stephan, I., Lenz, M.T., Peek, R.D. (1995) Growth of copper tolerant brown rot fungus Antrodia vaillantii on different substrates. International Research Group on Wood Protection, IRG/WP 95-10121.

  • Little, N.S., Schultz, T.P., Nicholas, D.D. (2010) Effect of different soils and pH amendments on brown-rot decay activity in a soil block test. Holzforschung 64:667–671.Google Scholar

  • Lombard, F.F., Chamuris, G.P. (1990) Basidiomycetes. In: Identification Manual for Fungi from Utility Poles in the Eastern United States. Eds. Wang, C.J.K., Zabel, R.A. Allen Press, Lawrence, Kansas. pp. 21–104.Google Scholar

  • Mai, C., Militz, H. (2007) Chemical wood protection. In: Wood Production, Wood Technology, and Biotechnological Impacts. Ed. Kües, U. Universitätsverlag Göttingen, Göttingen. pp. 259–271.Google Scholar

  • Nobles, M.K. (1965) Identification of cultures of wood inhabiting hymenomycetes. Can. J. Bot. 43:1097–1139.Google Scholar

  • Palfreyman, J.W., Bruce, A. (1994) “Detection and biocontrol of wood decay organisms“. In: Building Mycology. Ed. Singh, J. Chapman & Hall, UK. pp. 170–191.Google Scholar

  • Pfeffer, A., Hoegger, P.J., Kües, U., Militz H. (2012) Fungal colonization of outside weathered modified wood. Wood Sci. Technol. 46:63–72.Google Scholar

  • Quitt, H. (2009) Holzschutzmittelverzeichnis: Verzeichnis der Holzschutzmittel mit allgemeiner bauaufsichtlicher Zulassung, Auflistung der Holzschutzmittel mit RAL-Gütezeichen, Auflistung der Bläueschutzmittel nach VdL-Richtlinie. In: Schriften des Deutschen Instituts für Bautechnik. Ed. Schmidt, E. Berlin, Germany. pp. 74–75.Google Scholar

  • Ringman, R., Pilgård, A., Brischke, C., Richter, K. (2014) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:239–246.Google Scholar

  • Schimdt, O., Kebernik, U. (1989) Characterization and identification of the dry rot fungus Serpula lacrymans by polyacrylamide gel electrophoresis. Holzforschung 43:195–198.Google Scholar

  • Schmidt, O., Moreth, U. (1996) Biological characterization of Poria indoor brown-rot fungi. Holzforschung 50:105–110.Google Scholar

  • Schmidt, O., Moreth, U. (2003) Molecular identity of species and isolates of internal pore fungi Antrodia spp. and Oligoporus placenta. Holzforschung 57:12–126.Google Scholar

  • Schubert, M., Fink, S., Schwarze, F.W.M.R. (2008) In Vitro Screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. J. 31:227–248.Google Scholar

  • Schultz, T.P., Nicholas, D.D. (2010) A proposed accelerated field stake test for rapid assessment of wood preservative systems. Holzforschung 64:673–679.Google Scholar

  • Schultz, T.P., Nicholas, D.D. (2012) Relative fungal efficacy results from the soil block test with a long incubation period of three commercial copper wood preservatives. Holzforschung 66:245–250.Google Scholar

  • Schwarze, F.W.M.R. (2007) Wood decay under the microscope. Fungal Biol Rev. 21:133–170.Google Scholar

  • Schwarze, F.W.M.R., Jauss, F., Spenser, C., Hallam, C., Schubert, M. (2012) Evaluation an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol. Control. 61:160–168.Google Scholar

  • Sieber, T.N. (1995) Pynrenochaeta ligni-putridi spp. nov., a new coelomycete associated with butt rot of Picea abies in Switzerland. Mycol. Res. 99:274–276.Google Scholar

  • Sierra-Alvarez, R. (2007) Fungal bioleaching of metals in preservative-treated wood. Process Biochem. 42:798–804.Google Scholar

  • Stalpers, J.A. (1978) Identification of Wood-inhabiting Aphyllophorales in Pure Culture. Centraalbureau voor Schimmelcultures, Baarn.

  • Theden, G., Kottlors, C. (1965) Verfahren zum Sichtbarmachen von Schutzmitteln im Holz. Mitteilungen der Gesellschaft für Holzforschung. Bundesanstalt für Materialprüfung, Berlin-Dahlem, Germany. pp. 36–66.Google Scholar

  • White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a Guide to Methods and Applications. Eds. Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. Academic Press: San Diego, U.S.A. pp. 315–322.Google Scholar

  • Wilcox, W.W., Dietz, M. (1997) Fungi causing above ground wood decay in structures in California. Wood Fiber Sci. 29:291–298.Google Scholar

  • Woodward, B. and De Groot, R. (1999) Tolerance of Wolfiporia cocos isolates to copper in agar media. Forest Prod. J. 49:87–94.Google Scholar

  • Young, G.Y. (1961) Copper tolerance of some wood rotting fungi. Report no. 2223 U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.

  • Zabel, R.A., Lombard, F.F., Wang, C.J.K., Terracina F.C. (1985) Fungi associated with decay in treated southern pine utility poles in the eastern United States. Wood Fiber Sci. 17:75–91.Google Scholar

About the article

Received: 2016-08-26

Accepted: 2016-09-30

Published Online: 2016-11-05

Published in Print: 2017-03-01


Citation Information: Holzforschung, Volume 71, Issue 3, Pages 241–247, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0134.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in