Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 71, Issue 5

Issues

Static and dynamic tensile shear test of glued lap wooden joint with four different types of adhesives

Erik V. Bachtiar / Gaspard Clerc
  • Institute of Building Materials, ETH Zürich, Zurich, Switzerland
  • Institut für Werkstoffe und Holztechnologie, Berner Fachhochschule Architektur, Holz und Bau, Biel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas J. Brunner / Michael Kaliske / Peter Niemz
  • Institute of Building Materials, ETH Zürich, Zurich, Switzerland
  • Institut für Werkstoffe und Holztechnologie, Berner Fachhochschule Architektur, Holz und Bau, Biel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-07 | DOI: https://doi.org/10.1515/hf-2016-0154

Abstract

Investigations of quasi-static and fatigue failure in glued wooden joints subjected to tensile shear loading are presented. Lap joints of beech wood (Fagus sylvatica L.) connected with four different types of adhesives, i.e. polyurethane (PUR), melamine urea formaldehyde (MUF), bone glue and fish glue, were experimentally tested until the specimens failed. The average shear strengths obtained from the quasi-static test ranged from 12.2 to 13.4 MPa. These results do not indicate any influence of the different adhesive types. The influence of the adhesives is only visible from the results of the fatigue tests, which were carried out under different stress excitation levels between 45% and 75% of the shear strength. Specimens bound with ductile adhesive (PUR) showed a slightly higher number of cycles to failure (Nf) at low-stress levels and lower Nf at high-stress levels in comparison to more brittle adhesives (MUF, fish glue). In general, the performances of animal glues and MUF were similar in both quasi-static and fatigue loading under dry conditions.

Keywords: bone glue; fatigue test; fish glue; glued wood lap joint; melamine urea formaldehyde (MUF); polyurethane (PUR); tensile shear test

References

  • ASTM-D5266 (2013) Standard practice for estimating the percentage of wood failure in adhesives bonded joints. ASTM International, West Conshohocken, PA, USA.Google Scholar

  • Bond, I.P., Ansell, M.P. (1998) Fatigue properties of jointed wood composites. Part I statistical analysis, fatigue master curves and constant life diagrams. J. Mater. Sci. 33:2751–2762.Google Scholar

  • Bonfield, P.W., Ansell, M.P. (1991) Fatigue properties of wood in tension, compression and shear. J. Mater. Sci. 26:4765–4773.Google Scholar

  • Bonfield, P.W., Bond, I.P., Hacker, C.L., Ansell, M.P. (1992) Fatigue testing of wood composited for aerogenerator blades. Part VII, alternative wood species and joints. Mechanical Engineering Publication Ltd., B.R. Clayton, London.Google Scholar

  • Clauß, S., Joscak, M., Niemz, P. (2011) Thermal stability of glued wood joints measured by shear tests. Eur. J. Wood Wood Prod. 69:101–111.Google Scholar

  • Clorius, O.C., Pedersen, U.M., Hoffmeyer, P., Damkilde, L. (2000) Compressive fatigue in wood. Wood Sci. Tech. 34:21–37.Google Scholar

  • DIN-EN-302-1 (2000) Adhesives for load-bearing timber structures – Test methods – Part 1: Determination of bond strength in longitudinal tensile shear strength. Beuth Verlag GmbH, Berlin, Germany.Google Scholar

  • Gillwald, W. (1966) Investigations on the fatigue resistance of multiple layer particleboard. Holz Roh- Werkst. 24:445–449.Google Scholar

  • Hass, P., Müller, C., Clauss, S., Niemz, P. (2009) Influence of growth ring angle, adhesive system and viscosity on the shear strength of adhesive bonds. Wood Mater. Sci. Eng. 4:140–146.Google Scholar

  • Hass, P., Wittel, F.K., Mendoza, M., Herrmann, H.J., Niemz, P. (2012) Adhesive penetration in beech wood: experiments. Wood Sci. Tech. 46: 243–256.Google Scholar

  • Hass, P., Kläusler, O., Schlegel, S., Niemz, P. (2014) Effects of mechanical and chemical surface preparation on adhesively bonded wooden joints. Int. J. Adhes. Adhes. 51:95–102.Google Scholar

  • Jamieson, P. Innovation in Wind Turbine Design. John Wiley & Sons, West Sussex, 2011.Google Scholar

  • Kläusler, O., Clauss, S., Lübke, L., Trachsel, J., Niemz, P. (2013) Influence of moisture on stress-strain behavior of adhesives used for structural bonding of wood. Int. J. Adhes. Adhes. 44:57–65.Google Scholar

  • Knight, R.A.G. Adhesives for Wood. Chapman and Hall Ltd., London, 1952.Google Scholar

  • Kollmann, F., Krech, H. (1961) Fracture range and fatigue resistance of particle board. Eur. J. Wood Wood Prod. 19:113–118.Google Scholar

  • Kollmann, F.F.P., Cote, W.A. Principles of Wood Science and Technology – Solid Wood. Springer-Verlag, Berlin-Heidelberg, Germany, 1968.Google Scholar

  • Konnerth, J., Hahn, G., Gindl, W. (2009) Feasibility of particle board production using bone glue. Eur. J. Wood Wood Prod. 67:243–245.Google Scholar

  • Kyanka, G.H. (1980) Fatigue properties of wood and wood composites. Int. J. Fract. 16:609–616.Google Scholar

  • Lewis, W.C. (1960) Design consideration of fatigue in timber structures. Am. Soc. Civ. Eng. 86:15–23.Google Scholar

  • Li, J., Hunt, J.F., Gong, S., Cai, Z. (2016) Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panel (ESCP). Holzforschung 70:567–575.Google Scholar

  • Li, L., Gong, M., Smith, I., Li, D. (2012) Exploratory study on fatigue behavior of laterally loaded, nailed timber joints, based on dissipated energy criterion. Holzforschung 66:863–869.Google Scholar

  • Nakano, T. (1997) Fatigue and heating in the non-linear region for wood. Holzforschung 51:309–315.Google Scholar

  • Olson, W.Z., Bensend, D.W., Bruce, H.D. Resistance of Several Types of Glue in Wood Joints to Fatigue Stressing. United States Department of Agriculture, Forest Service, Forest Products Laboratory, WI, 1955.Google Scholar

  • Ritchie, R.O. (1999) Mehcanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract. 100:55–83.Google Scholar

  • Schellmann, N. (2009) Animal glues – their adhesive properties, longevity and suggested use for repairing taxidermy specimens. Natur. Sci. Collect. Assoc. News 7:36–40.Google Scholar

  • Smith, I., Landis, E., Gong, M. Fracture and Fatigue in Wood. Wiley, Chichester, 2003.Google Scholar

  • Sweatt, H.B. (1946) The properties of animal glue. J. Chem. Educ. 23:192–194.Google Scholar

  • Tsai, K.T., Ansell, M.P. (1990) The fatigue properties of wood in flexure. J. Mater. Sci. 25:865–878.Google Scholar

About the article

Received: 2016-09-16

Accepted: 2017-01-05

Published Online: 2017-02-07

Published in Print: 2017-05-01


Citation Information: Holzforschung, Volume 71, Issue 5, Pages 391–396, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0154.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in