Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

12 Issues per year

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Ahead of print


Effects of moisture content and temperature on wood creep

Tai-Yun HsiehORCID iD: http://orcid.org/0000-0002-5388-4351 / Feng-Cheng Chang
  • Corresponding author
  • School of Forestry and Resource Conservation, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-10 | DOI: https://doi.org/10.1515/hf-2018-0056


The effects of moisture content (MC) and temperature (T) on the creep of Japanese cedar were investigated via a series of short-term creep tests, while MC had a higher effect than T, desorption of water caused more deformation. The results were separated into two distinct groups with MCs higher or lower than the equilibrium moisture content (EMC) and it was found that the mechano-sorptive effect is time-independent. The total creep strain of wood was explained by a model considering the instantaneous strain, creep strain and strain induced by the mechano-sorptive effect. The proposed model is in agreement with the creep master curves based on the time-temperature superposition principle (tTSP).

Keywords: creep; mechano-sorptive effect; moisture content; time-temperature superposition principle


  • Armstrong, L.D., Kingston, R.S.T. (1960) Effect of moisture changes on creep in wood. Nature 185:862–863.CrossrefGoogle Scholar

  • Armstrong, L.D., Kingston, R.S.T. (1962) The effect of moisture content on the deformation of wood under stress. Aust. J. Appl. Sci. 13:257–276.Google Scholar

  • Bodig, J., Jayne, B.A. Mechanics of Wood and Wood Composites. Van Nostrand Reinhold Company Inc., New York, 1982.Google Scholar

  • Chang, F.-C., Lam, F., Kadla, J.F. (2013a) Application of time-temperature-stress superposition on creep of wood-plastic composites. Mech. Time-Depend. Mater. 17:427–437.CrossrefWeb of ScienceGoogle Scholar

  • Chang, F.-C., Lam, F., Kadla, J.F. (2013b) Using master curves based on time-temperature superposition principle to predict creep strains of wood-plastic composites. Wood Sci. Technol. 47:571–584.CrossrefWeb of ScienceGoogle Scholar

  • Darlington, M.W., Turner, S. (1978) Creep of thermoplastics. In: Creep of Engineering Materials. Journal of Strain Analysis Monograph. Ed. Pomeroy, C.D. Mechanical Engineering Publication Ltd., London. pp. 197–213.Google Scholar

  • Ferry, J.D. Viscoelastic Properties of Polymers. Third edition. Wiley, New York, 1980.Google Scholar

  • Fridley, K.J., Tang, R.C., Soltis, L.A. (1992) Creep behavior model for structural lumber. J. Struct. Eng. 118:2261–2277.CrossrefGoogle Scholar

  • Gibson, E.J. (1965) Creep of wood: role of water and effect of a changing moisture content. Nature 205:213–215.Google Scholar

  • Hassani, M.M., Wittel, F.K., Hering, S., Herrmann, H.J. (2015) Rheological model for wood. Comput. Methods Appl. Mech. Eng. 283:1032–1060.CrossrefGoogle Scholar

  • Hassani, M.M., Wittel, F.K., Ammann, S., Niemz, P., Herrmann, H.J. (2016) Moisture-induced damage evolution in laminated beech. Wood Sci. Technol. 50:917–940.CrossrefWeb of ScienceGoogle Scholar

  • Hearmon, R.E.S., Paton, J.M. (1964) Moisture content changes and creep of wood. Forest Prod. J. 14:357–359.Google Scholar

  • Hoffmeyer, P., Davidson, R.W. (1989) Mechano-sorptive creep mechanism of wood in compression and bending. Wood Sci. Technol. 23:215–227.CrossrefGoogle Scholar

  • Leicester, R.H. (1971) A rheological model for mechano-sorptive deflections of beams. Wood Sci. Technol. 5:211–220.CrossrefGoogle Scholar

  • Madsen, B. Structural Behaviour of Timber, Timber Engineering Ltd. North Vancouver. British Columbia, Canada, 1992.Google Scholar

  • Mohager, S. (1987) Studies of creep in wood. Thesis, The Royal Institute of Technology, Report TRITA-BYMA, 1.Google Scholar

  • Mohager, S., Toratti, T. (1993) Long term bending creep of wood in cyclic relative humidity. Wood Sci. Technol. 27:49–59.Google Scholar

  • Navi, P., Stanzl-Tschegg, S. (2009) Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: wood machining – micromechanics and fracture. Holzforschung. 63:186–195.Web of ScienceGoogle Scholar

  • Pearson, H., Ormarsson, S., Gabbitas, B. (2015) Nonlinear tensile creep behavior of radiata pine at elevated temperatures and different moisture contents. Holzforschung. 69:915–923.Web of ScienceGoogle Scholar

  • Samarasinghe, S., Loferski, J.R., Holzer, S.M. (2007) Creep modeling of wood using time-temperature superposition. Wood Fiber Sci. 26:122–130.Google Scholar

  • Schniewind, A.P. (1967) Creep-rupture life of Douglas-fir under cyclic environmental conditions. Wood Sci. Technol. 1:278–288.CrossrefGoogle Scholar

  • Schniewind, A.P., Lyon, D.E. (1973) Further experiments on creep-rupture life under cyclic environmental conditions. Wood Fiber 4:334–341.Google Scholar

  • Takahashi, C., Ishimaru, Y., Iida, I., Furuta, Y. (2004) The creep of wood destabilized by change in moisture content. Part 1: the creep behaviors of wood during and immediately after drying. Holzforschung 58:261–267.Google Scholar

  • Zhou, Y., Fushitani, M., Kubo, T., Ozawa, M. (1999) Bending creep behavior of wood under cyclic moisture changes. J. Wood Sci. 45:113–119.CrossrefGoogle Scholar

About the article

Received: 2018-03-23

Accepted: 2018-06-14

Published Online: 2018-07-10

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20180056, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0056.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in