Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Faix, Oskar / Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Volume 73, Issue 1


Novel protein-repellent and antimicrobial polysaccharide multilayer thin films

Matea Korica
  • University of Belgrade, Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lidija Fras Zemljič
  • Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanovaul. 17, 2000 Maribor, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matej Bračič
  • Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanovaul. 17, 2000 Maribor, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rupert Kargl
  • Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanovaul. 17, 2000 Maribor, Slovenia
  • Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Spirk
  • Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Reishofer
  • Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarina Mihajlovski
  • University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirjana KostićORCID iD: https://orcid.org/0000-0001-9925-4884
Published Online: 2018-10-17 | DOI: https://doi.org/10.1515/hf-2018-0094


Nanostructured and bio-active polysaccharide-based thin films were manufactured by means of subsequent spin-coated deposition of a regenerated cellulose (RC) layer and a 2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO) oxidised cellulose nanofibril (TOCN) layer. The bio-activity of the bilayer was achieved by addition of chitosan (CS). The chitosan was either mixed with the TOCN (TOCN+CS) and deposited on the RC layer by spin-coating, or deposited on the RC and TOCN bilayer by pumping its aqueous solution with various pH over the surface of the bilayer. The water content of the thin films and the CS interactions with the bilayer during deposition were studied in situ by means of a quartz crystal microbalance with dissipation (QCM-D). The pH dependent charging behaviour of the TOCN, TOCN+CS and CS dispersions was evaluated by pH-potentiometric titrations. The surface morphology of the thin films was characterised by atomic force microscopy (AFM). The bio-activity of the thin films was evaluated by studying their protein-repellent properties in situ with a continuous flow of bovine serum albumin (BSA) by means of QCM-D and by evaluating their antibacterial properties in vitro against Staphylococcus aureus and Escherichia coli. These polysaccharide-based thin films are high value-added products because of their multifunctionality, high water absorbance capacity, protein-repellence and antimicrobial activity, and have the potential for medical application as a wound dressing material.

This article offers supplementary material which is provided at the end of the article.

Keywords: antimicrobial properties; chitosan; nanostructured polysaccharide thin films; protein-repellent properties; TEMPO oxidised cellulose nanofibrils


  • Alarcón, B., Lacal, J.C., Fernández-Sousa, J.M., Carrasco, L. (1984) Screening for new compounds with antiherpes activity. Antiviral Res. 4:234–244.Google Scholar

  • Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Österberg, M., Wågberg, L. (2009) Nanoscale cellulose films with different crystallinities and mesostructures – their surface properties and interaction with water. Langmuir 25:7675–7685.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Chung, Y.C., Chen, C.Y. (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour. Technol. 99:2806–2814.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Dimilla, P.A., Albelda, S.M., Quinn, J.A. (1992) Adsorption and elution of extracellular matrix proteins on non-tissue culture polystyrene Petri dishes. J. Colloid Interface Sci. 153:212–225.CrossrefGoogle Scholar

  • Elschner, T., Bračič, M., Mohan, T., Kargl, R., Stana-Kleinschek, K. (2018) Modification of cellulose thin films with lysine moieties: a promising approach to achieve antifouling performance. Cellulose 25:537–547.Web of ScienceCrossrefGoogle Scholar

  • Fulton, J.A., Blasiole, K.N., Cottingham, T., Tornero, M., Graves, M., Smith, L.G., Mirza, S., Mostow, E.N. (2012) Wound dressing absorption: a comparative study. Adv. Skin Wound Care 25:315–320.CrossrefWeb of SciencePubMedGoogle Scholar

  • Genco, T., Zemljič, L., Bračič, M., Stana-Kleinschek, K., Heinze, T. (2012) Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose 19:2057–2067.Web of ScienceCrossrefGoogle Scholar

  • Gupta, B.S., Edwards, J.V. (2009) Textile materials and structures for wound care products. In: Advanced Textiles for Wound Care. Ed. Rajendran, S. Woodhead Publishing Limited, Boca Raton FL. pp. 48–96.Web of ScienceGoogle Scholar

  • Hirano, S., Noshiki, Y., Kinugawa, J., Higashijima, H., Hayashi, T. (1987) Chitin and chitosan for use as novel biomedical materials. In: Advances in Biomedical Polymers. Ed. Gebelein, L.G. Plenum, New York, NY. pp. 285–297.Google Scholar

  • Hosokawa, J., Nishiyama, M., Yoshihara, K., Kubo, T., Terabe, A. (1991) Reaction between chitosan and cellulose on biodegradable composite film formation. Ind. Eng. Chem. Res. 30:788–792.CrossrefGoogle Scholar

  • Hussain, Z., Khalaf, M., Adil, H., Zageer, D., Hassan, F., Mohammed, S., Yousif, E. (2016) Metal complexes of Schiff’s bases containing sulfonamides nucleus: a review. Res. J. Pharm. Biol. Chem. Sci. 7:1008–1025.Google Scholar

  • Isogai, A., Saito, T., Fukuzumi, H. (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jocić, D., Topalović, T. (2004) Biopolymer chitosan: properties, interactions and its use in the treatment of textiles, review paper. Hem. Ind. 58:457–469.CrossrefGoogle Scholar

  • Khalil, A., Bhat, A., Yusra, I. (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87:963–979.Web of ScienceCrossrefGoogle Scholar

  • Kingkaew, J., Kirdponpattara, S., Sanchavanakit, N., Pavasant, P., Phisalaphong, M. (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol. Bioprocess Eng. 19:534–544.Web of ScienceCrossrefGoogle Scholar

  • Kittle, J.D., Du, X., Jiang, F., Qian, C., Heinze, T., Roman, M., Esker, A.R. (2011) Equilibrium water contents of cellulose films determined via solvent exchange and quartz crystal microbalance with dissipation monitoring. Biomacromolecules 12:2881–2887.CrossrefWeb of SciencePubMedGoogle Scholar

  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Aknerfors, M., Gray, D., Dorris A. (2012) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50: 5438–5466.Google Scholar

  • Lin, N., Dufresne, A. (2014) Nanocellulose in biomedicine: current status and future Prospect. Eur. Polym. J. 59:302–325.Web of ScienceCrossrefGoogle Scholar

  • Milanović, J., Kostić, M., Škundrić, P. (2012) Structure and properties of TEMPO-oxidized cotton fibers. CI&CEQ 18:473–481.CrossrefGoogle Scholar

  • Mishima, T., Hisamatsu, M., York, W.S., Teranishi, K., Yamada, T. (1998) Adhesion on β-D-glucans to cellulose. Carboxydr. Res. 308:389–395.CrossrefGoogle Scholar

  • Mohan, T., Spirk, S., Kargl, R., Doliska, A., Vessel, A., Salzmann, I., Resel, R., Ribitsch, V., Stana-Kleinschek, K. (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815.Web of ScienceCrossrefGoogle Scholar

  • Mohan, T., Findenig, G., Höllbacher, S., Cerny, C., Ristić, T., Kargl, R., Spirk, S., Maver, U., Stana-Kleinschek, K., Ribitsch, V. (2014) Interaction and enrichment of protein on cationic polysaccharide surfaces. Colloids Surf. B Biointerfaces 123:533–541.Web of ScienceCrossrefPubMedGoogle Scholar

  • Myllytie, P., Salmi, J., Laine, J. (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. BioRes. 4:1647–1662.Google Scholar

  • Naseri-Nosar, M., Ziora, Z.M. (2018) Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr. Polym. 189:379–398.Web of ScienceCrossrefPubMedGoogle Scholar

  • Nikolic, T., Kostic, M., Praskalo, J., Pejic, B., Petronijevic, Z., Skundric, P. (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr. Polym. 82:976–981.Web of ScienceCrossrefGoogle Scholar

  • Nikolic, T., Milanovic, J., Kramar, A., Petronijevic, Z., Milenkovic, L., Kostic, M. (2014) Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers. Cellulose 21:1369–1380.Web of ScienceCrossrefGoogle Scholar

  • Orelma, H., Filpponen, I., Johansson, L.S., Laine, J., Rojas, O.J. (2012) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12:4311–4318.Web of ScienceGoogle Scholar

  • Peršin, Z., Mavera, U., Pivec, T., Maver, T., Vesela, A., Mozetič, M., Stana-Kleinschek, K. (2014) Novel cellulose based materials for safe and efficient wound treatment. Carbohydr. Polym. 100:55–64.Web of SciencePubMedCrossrefGoogle Scholar

  • Phaechamud, T., Yodkhum, K., Charoenteeraboon, J., Tabata, Y. (2015) Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound. Mater. Sci. Eng. C Mater. Biol. Appl. 50:210–25.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Pillai, C.K.S., Paul, W., Sharma, C.P. (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34:641–678.CrossrefWeb of ScienceGoogle Scholar

  • Rabe, M., Verdes, D., Seeger, S. (2011) Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162:87–106.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Ravi Kumar, M.N.V., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, A.J. (2004) Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104:6017–6084.PubMedCrossrefGoogle Scholar

  • Ristić, T., Mohan, T., Kargl, R., Hribernik, S., Doliška, A., Stana-Kleinschek, K., Fras, L. (2014) A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose 21:2315–2325.Web of ScienceCrossrefGoogle Scholar

  • Ristić, T., Hribernik, S., Fras-Zemljič, L. (2015) Electrokinetic properties of fibres functionalised by chitosan and chitosan nanoparticles. Cellulose 22:3811–3823.CrossrefWeb of ScienceGoogle Scholar

  • Roemhild, K., Niemz, F., Mohan, T., Hribernik, S., Kurecic, M., Ganser, C., Teichert, C., Spirk, S. (2016) The cellulose source matters-hollow semi spheres or fibers by needleless electrospinning. Macromol. Mater. Eng. 301:42–47.Web of ScienceCrossrefGoogle Scholar

  • Sauerbrey, G. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155:206–222.CrossrefGoogle Scholar

  • Shahid-Ul-Islam, Shahid, M., Mohammad, F. (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers-a review. Ind. Eng. Chem. Res. 52:5245–5260.Web of ScienceCrossrefGoogle Scholar

  • Stana-Kleinschek, K., Ehmann, H.M.A., Spirk, S., Doliška, A., Fasl, H., Fras-Zemljič, L., Kargl, R., Mohan, T., Breitwieser, D., Ribitsch V. (2012) Cellulose and other polysaccharides surface properties and their characterisation. In: The European Polysaccharide Network of Excellence (EPNOE). Ed. Navard, P. Springer-Verlag, Wien. pp. 215–251.Google Scholar

  • Strnad, S., Šauperl, O., Fras-Zemljič, L. (2010) Cellulose fibres functionalised by chitosan: characterization and application. In: Biopolymers. Ed. Elnashar, M. InTech, Rijeka. pp. 181–200.Google Scholar

  • Suzuki, S., Ogawa, Y., Ohura, Y., Hashimoto, K., Suzuki, M. (1982) Chitin/Chitosan. In: Proceedings of the 2nd International Conference on Chitin/Chitosan, Tottori, Japan, Eds. Hirano, S., Tokura, S. Japan Soc. p. 210.Google Scholar

  • Teramoto, A., Takagi, Y., Hachimori, A., Abe, K. (1999) Interaction of albumin with polysaccharides containing ionic groups. Polym. Adv. Technol. 10:681–686.CrossrefGoogle Scholar

  • Tokura, S., Ueno, K., Miyazaki, S., Nishi, N. (1997) Molecular weight dependent antimicrobial activity by chitosan. Macromol. Symp. 120:1–9.CrossrefGoogle Scholar

  • Vallée, A., Humblot, V., Al Housseiny, R., Boujday, S., Pradier, C-M. (2013) BSA adsorption on aliphatic and aromatic acid SAMs: investigating the effect of residual surface charge and sublayer nature. Colloids Surf. B Biointerfaces 109:136–142.CrossrefWeb of SciencePubMedGoogle Scholar

  • Windler, L., Height, M., Nowack, B. (2013) Comparative evaluation of antimicrobials for textile applications. Environ. Int. 53:62–73.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Zeronian, S.H., Inglesby, M.K. (1995) Bleaching of cellulose by hydrogen peroxide. Cellulose 2:265–272.CrossrefGoogle Scholar

  • Zhang, S., Wang, P., Wu, R., Peng, H., Wu, R. (2016) Preparation and properties of oxidized regenerated cellulose by hydrogen peroxide. CIESC J. 67:2401–2409.Google Scholar

  • Zhou, Q., Rutland, M.W., Teeri, T.T., Brumer, H. (2007) Xyloglucan in cellulose modification. Cellulose 14:625–641.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-04-26

Accepted: 2018-09-27

Published Online: 2018-10-17

Published in Print: 2018-12-19

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors wish to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through the project OI 172029.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, Volume 73, Issue 1, Pages 93–103, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0094.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in