Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Ahead of print


Accessing the natural variation of the abundances of major lignans in the heartwood of Taiwania cryptomerioides by 1H-NMR and LC-MS profiling

Nai-Wen Tsao / Shin-Hung Pan / Jeng-Der Chung / Yueh-Hsiung Kuo
  • Graduate Institute of Chinese Pharmaceutical Science, China Medical University, Taichung, Taiwan
  • Department of Biotechnology, Asia University, Taichung, Taiwan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sheng-Yang Wang / Ying-Hsuan Sun
  • Corresponding author
  • Department of Forestry, National Chung-Hsing University, Taichung 402, Taiwan, Phone: +886-22840345, ext-147
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-07 | DOI: https://doi.org/10.1515/hf-2018-0117


Lignans are major bioactive secondary metabolites, which are also formed in the heartwood (hW) of Taiwania (Taiwania cryptomerioides). Their biosynthesis pathways are complex and involve many enzymes and intermediates. To evaluate the extent of the genetic components leading to the variety of lignans in Taiwania hW, 35 Taiwania genotypes of four provenances were surveyed using the proton nuclear magnetic resonance (1H-NMR) and liquid chromatography-mass spectrometry (LC-MS) analyses. The metabolite profiles were statistically evaluated by principal component analysis (PCA) and the general linear model (GLM). The broad-sense heritability (H2) was further evaluated by linear mixed model (LMM) analysis. It was demonstrated that the genetic factor is the major contributor to the abundance of lignans, though the environmental factor also has some effect on it. Among the metabolites detected by 1H-NMR, lignans were the major compounds that exhibited high a H2 (0.52–0.82), which was further verified by LC-MS. The conclusion is that 1H-NMR spectroscopy is suitable for quick screenings, predictions and semi-quantitation of lignans. The high H2 is also indicative of the lignan abundances as traits that can be genetically modified to achieve a significant wood quality improvement.

Keywords: lH-NMR; broad-sense heritability; heartwood; LC-MS; lignan; metabolomics analysis; natural variation; Taiwania cryptomerioides


  • Adlercreutz, H. (2007) Lignans and human health. Crit. Rev. Clin. Lab. Sci. 44:483–525.CrossrefPubMedGoogle Scholar

  • Alul, F.Y., Cook, D.E., Shchelochkov, O.A., Fleener, L.G., Berberich, S.L., Murray, J.C., Ryckman, K.K. (2013) The heritability of metabolic profiles in newborn twins. Heredity 110:253–258.PubMedCrossrefGoogle Scholar

  • Ban, H.S., Lee, S., Kim, Y.P., Yamaki, K., Shin, K.H., Ohuchi, K. (2002) Inhibition of prostaglandin E2 production by taiwanin C isolated from the root of Acanthopanax chiisanensis and the mechanism of action. Biochem. Pharmacol. 64:1345–1354.PubMedCrossrefGoogle Scholar

  • Chandradevan, M., Bala, J.I. (2014) High throughput analysis on selected polyphenol production and principal component analysis (PCA) in Phyllanthus watsonii grown under different environmental conditions. J. Trop. Agric. Food Sci. 42:157–167.Google Scholar

  • Chang, S.T., Wang, S.Y., Wu, Y.C. (1998) Retention of red color in Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 52:13–17.CrossrefGoogle Scholar

  • Chang, S.T., Wang, S.Y., Wu, C.L., Su, Y.C., Kuo, Y.H. (1999a) Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 53:487–490.Google Scholar

  • Chang, S.T., Wang, S.Y., Su, Y.C., Huang, S.L., Kuo, Y.H. (1999b) Chemical constituents and mechanisms of discoloration of Taiwania (Taiwania cryptomerioides Hayata) heartwood. I The structure reconfirmation and conversion mechanism of taiwanin A. Holzforschung 53:142–146.Google Scholar

  • Chang, S.T., Wang, D.S.Y., Wu, C.L., Shiah, S.G., Kuo, Y.H., Chang, C.J. (2000a) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55:227–232.CrossrefGoogle Scholar

  • Chang, S.T., Wang, S.Y., Wu, C.L., Chen, P.F., Kuo, Y.H. (2000b) Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 54:241–245.Google Scholar

  • Chang, S.T., Cheng, S.S., Wang, S.Y. (2001) Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). J. Chem. Ecol. 27:717–724.PubMedCrossrefGoogle Scholar

  • Chang, S.T., Wang, S.Y., Kuo, Y.H. (2003) Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J. Wood Sci. 49:1–4.CrossrefGoogle Scholar

  • Chang, C.I., Chang, J.Y., Kuo, C.C., Pan, W.Y., Kuo, Y.H. (2005) Four new 6-nor5(→7)abeo-abietane type diterpenes and antitumoral cytotoxic diterpene constituents from the bark of Taiwania cryptomerioides. Planta Med. 71:72–76.CrossrefPubMedGoogle Scholar

  • Chiang, N.T., Ma, L.T., Lee, Y.R., Tsao, N.W., Yang, C.K., Wang, S.Y., Chu, F.H. (2018) The gene expression and enzymatic activity of pinoresinol-lariciresinol reductase during wood formation in Taiwania cryptomerioides Hayata. Holzforschung doi.org/10.1515/hf-2018-0026. [Epub ahead of print].Google Scholar

  • Chien, S.C., Kuo, Y.H. (2009) Review of chemical constituents of Taiwania cryptomerioides. Chemistry 67:33–44. (In Chinese with English abstract).Google Scholar

  • Cho, J.Y., Park, J., Kim, P.S., Yoo, E.S., Balk, K.U., Park, M.H. (2001) Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation. Biol. Pharm. Bull. 24:167–171.CrossrefGoogle Scholar

  • Clausen, M.R., Edelenbos, M., Bertram, H.C. (2014) Mapping the variation of the carrot metabolome using 1H-NMR spectroscopy and consensus PCA. J. Agric. Food Chem. 62:4392–4398.PubMedCrossrefGoogle Scholar

  • Demirkan, A., Henneman, P., Verhoeven, A., Dharuri, H., Amin, N., van Klinken, J.B., Karssen, L.C., de Vries, B., Meissner, A., Göraler, S., van den Maagdenberg, A.M., Deelder, A.M., C’t Hoen, P.A., van Duijn, C.M., van Dijk, K.W. (2015) Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genet. 11:e1004835.CrossrefPubMedGoogle Scholar

  • Eckert, A.J., Wegrzyn, J.L., Cumbie, W.P., Goldfarb, B., Huber, D.A., Tolstikov, V., Fiehn, O., Neale, D.B. (2012) Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytol. 193:890–902.CrossrefPubMedGoogle Scholar

  • Fraige, K., Pereira-Filho, E.R., Carrilho, E. (2014) Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DAD-MS and exploratory analysis by principal component analysis. Food Chem. 145:395–403.CrossrefPubMedGoogle Scholar

  • Hall, D., Hallingback, H.R., Wu, H.X. (2016) Estimation of number and size of QTL effects in forest tree traits. Tree Genet. Genomes 12:110.CrossrefGoogle Scholar

  • Hannrup, B., Cahalan, C., Chantre, G., Grabner, M., Karlsson, B., Le Bayon, I., Jones, G.L., Muller, U., Pereira, H., Rodrigues, J.C., Rosner, S., Rozenberg, P., Wilhelmsson, L., Wimmer, R. (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. For. Res. 19:14–29.CrossrefGoogle Scholar

  • Harn, H.J., Chuang, H.M., Chang, L.F., Huang, A.Y., Hsieh, S.T., Lin, S.Z., Chou, C.W., Kuo, Y.H., Chiou, T.W. (2014) Taiwanin A targets non-steroidal anti-inflammatory drug-activated gene-1 in human lung carcinoma. Fitoterapia 99:227–235.PubMedCrossrefGoogle Scholar

  • Ho, P.J., Chou, C.K., Kuo, Y.H., Tu, L.C., Yeh, S.F. (2007) Taiwanin A induced cell cycle arrest and p53-dependent apoptosis in human hepatocellular carcinoma HepG2 cells. Life Sci. 80:493–503.PubMedCrossrefGoogle Scholar

  • Ho, P.J., Chou, C.K., Yeh, S.F. (2012a) Role of JNK and p38 MAPK in Taiwanin A-induced cell death. Life Sci. 91:1358–1365.CrossrefGoogle Scholar

  • Ho, C.L., Yang, S.S., Chang, T.M., Su, Y.C. (2012b) Composition, antioxidant, antimicrobial and anti-wood-decay fungal activities of the twig essential of Taiwania cryptomerioides from Taiwan. Nat. Prod. Commun. 7:261–264.Google Scholar

  • Hsieh, H.L., Ma, L.T., Wang, S.Y., Chu, F.H. (2015) Cloning and expression of a sesquiterpene synthase gene from Taiwania cryptomerioides. Holzforschung 69:1041–1048.Google Scholar

  • Hsu, L.J., Chu, F.H. (2015) Plasticity residues involved in secondary cyclization of terpene synthesis in Taiwania cryptomerioides. Tree Genet. Genomes 11:796.CrossrefGoogle Scholar

  • Hsu, H.H., Kuo, W.W., Day, C.H., Shibu, M.A., Li, S.Y., Chang, S.H., Shin, H.N., Chen, R.J., Viswanadha, V.P., Kuo, Y.H., Huang, C.Y. (2017) Taiwanin E inhibits cell migration in human LoVo colon cancer cells by suppressing MMP-2/9 expression via p38 MAPK pathway. Environ. Toxicol. 32:2021–2031.PubMedCrossrefGoogle Scholar

  • Lai, M., Dong, L., Yi, M., Sun, S., Zhang, Y., Fu, L., Xu, Z., Lei, L., Leng, C., Zhang, L. (2017) Genetic variation, heritability and genotype×environment interactions of resin yield, growth traits and morphologic traits for Pinus elliottii at three progeny trials. Forests 8:409.CrossrefGoogle Scholar

  • Lambert, J.B., Kozminski, M.A., Fahlstrom, C.A., Santiago-Blay, J.A. (2007a) Proton nuclear magnetic resonance characterization of resins from the family Pinaceae. J. Nat. Prod. 70:188–195.CrossrefGoogle Scholar

  • Lambert, J.B., Kozminski, M.A., Santiago-Blay, J.A. (2007b) Distinctions among conifer exudates by proton magnetic resonance spectroscopy. J. Nat. Prod. 70:1283–1294.CrossrefGoogle Scholar

  • Li, B., Zhang, Y., Mohammadi, S.A., Huai, D., Zhou, Y., Kliebenstein, D.J. (2016) An integrative genetic study of rice metabolism, growth and stochastic variation reveals potential C/N partitioning loci. Sci. Rep. 6:30143.PubMedCrossrefGoogle Scholar

  • Lin, Y.M., Kuo, W.W., Velmurugan, B.K., Hsien, H.H., Hsieh, Y.L., Hsu, H.H., Tu, C.C., Bau, D.T., Viswanadha, V.P., Huang, C.Y. (2016) Helioxanthin suppresses the cross talk of COX-2/PGE2 and EGFR/ERK pathway to inhibit arecoline-induced oral cancer cell (T28) proliferation and blocks tumor growth in xenografted nude mice. Environ Toxicol. 31:2045–2056.CrossrefPubMedGoogle Scholar

  • Matros, A., Liu, G., Hartmann, A., Jiang, Y., Zhao, Y., Wang, H., Ebmeyer, E., Korzun, V., Schachschneider, R., Kazman, E., Schacht, J., Longin, F., Reif, J.C., Mock, H.P. (2017) Genome-metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (Triticum aestivum). J. Exp. Bot. 68:415–428.PubMedGoogle Scholar

  • Medola, J.F., Cintra, V.P., Pesqueira E Silva, E.P., de Andrade Royo, V., de Silva, R., Saraiva, J., Albuquerque, S., Bastos, J.K., Andrade E Silva, M.L., Tavares, D.C. (2007) (-)-Hinokinin causes antigenotoxicity but not genotoxicity in peripheral blood of Wistar rats. Food Chem. Toxicol. 45:638–642.PubMedCrossrefGoogle Scholar

  • Pan, Z., Fan, G., Yang, R.P., Luo, W.Z., Zhou, X.D., Zhang, Y. (2015) Discriminating Lamiophlomis rotata according to geographical origin by 1H-NMR spectroscopy and multivariate analysis. Phytochem. Anal. 26:247–252.PubMedCrossrefGoogle Scholar

  • Poke, F.S., Potts, B.M., Vaillancourt, R.E., Raymond, C.A. (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Ann. For. Sci. 63:813–821.CrossrefGoogle Scholar

  • Porth, I., Klapste, J., Skyba, O., Hannemann, J., McKown, A.D., Guy, R.D., DiFazio, S.P., Muchero, W., Ranjan, P., Tuskan, G.A., Friedmann, M.C., Ehlting, J., Cronk, Q.C.B., El-Kassaby, Y.A., Douglas, C.J., Mansfield, S.D. (2013) Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol. 200:710–726.PubMedCrossrefGoogle Scholar

  • Robinson, A.R., Ukrainetz, N.K., Kang, K.Y., Mansfield, S.D. (2007) Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytol. 174:762–773.CrossrefPubMedGoogle Scholar

  • Shi, X., Zhang, K., Xue, N., Su, L., Ma, G., Qi, J., Wu, Y., Wang, Q., Shi, Q. (2013) Differentiation of genuine Inula britannica L. and substitute specimens based on the determination of 15 components using LC-MS/MS and principal components analysis. Food Chem. 141:4019–4025.PubMedCrossrefGoogle Scholar

  • Shyur, L.F., Lee, S.H., Chang, S.T., Lo, C.P., Kuo, Y.H., Wang, S.Y. (2010) Taiwanin A inhibits MCF-7 cancer cell activity through induction of oxidative stress, upregulation of DNA damage checkpoint kinases, and activation of p53 and FasL/Fas signaling pathways. Phytomedicine 18:16–24.CrossrefPubMedGoogle Scholar

  • Suzuki, S., Umezawa, T. (2007) Biosynthesis of lignans and norlignans. J. Wood Sci. 53:273–284.CrossrefGoogle Scholar

  • Tsao, N.W., Sun, Y.H., Chien, S.C., Chu, F.H., Chang, S.T., Kuo, Y.H., Wang, S.Y. (2016) Content and distribution of lignans in Taiwania cryptomerioides Hayata. Holzforschung 70:511–518.CrossrefGoogle Scholar

  • Tseng, P.C., Hsu, H.C., Janmanchi, D., Lin, C.H., Kuo, Y.H., Chou, C.K., Yeh, S.F. (2008a) Helioxanthin inhibits interleukin-1 beta-induced MIP-1 beta production by reduction of c-jun expression and binding of the c-jun/CREB1 complex to the AP-1/CRE site of the MIP-1 beta promoter in Huh7 cells. Biochem. Pharmacol. 76:1121–1133.CrossrefGoogle Scholar

  • Tseng, Y.P., Kuo, Y.H., Hu, C.P., Jeng, K.S., Janmanchi, D., Lin, C.H., Chou, C.K., Yeh, S.F. (2008b) The role of helioxanthin in inhibiting human hepatitis B viral replication and gene expression by interfering with the host transcriptional machinery of viral promoters. Antiviral Res. 77:206–214.CrossrefGoogle Scholar

  • Ukrainetz, N.K., Kang, K.Y., Aitken, S.N., Stoehr, M., Mansfield, S.D. (2008) Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Can. J. For. Res. 38:1536–1546.CrossrefGoogle Scholar

  • Wang, S.Y., Wu, J.H., Shyur, L.F., Kuo, Y.H., Chang, S.T. (2002) Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56:487–292.Google Scholar

  • Wang, S.Y., Wang, Y.S., Tseng, Y.H., Lin, C.T., Liu, C.P. (2006) Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung 60:528–532.Google Scholar

  • Wang, H.C., Tseng, Y.H., Wu, H.R., Chu, F.H., Kuo, Y.H., Wang, S.Y. (2014) Anti-proliferation effect on human breast cancer cells via inhibition of pRb phosphorylation by taiwanin E isolated from Eleutherococcus trifoliatus. Nat. Prod. Commun. 9:1303–1306.PubMedGoogle Scholar

  • Wen, C.C., Kuo, Y.H., Jan, J.T., Liang, P.H., Wang, S.Y., Liu, H.G., Lee, C.K., Chang, S.T., Kuo, C.J., Lee, S.S., Hou, C.C., Hsiao, P.W., Chien, S.C., Shyur, L.F., Yang, N.S. (2007) Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 50:4087–4095.PubMedCrossrefGoogle Scholar

  • Wricke, G., Weber, E. (1986) Quantitative genetics. In: Quantitative Genetics and Selection in Plant Breeding. Eds. Wricke, G. Walter de Gruyter, Berlin. pp. 43–46.Google Scholar

  • Zhao, Q., Song, Z.Q., Fang, X.S., Pan, Y.L., Guo, L.L., Liu, T., Wang, J.H. (2016) Effect of genotype and environment on Salvia miltiorrhiza roots using LC/MS-based metabolomics. Molecules 21:414.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-05-22

Accepted: 2018-11-21

Published Online: 2019-01-07

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This project was supported by the Ministry of Science and Technology, Taiwan, (MOST 104-2321-B-005-010 and 104-2321-B-005-011) and the Ministry of Education, Taiwan, R.O.C under the ATU plan.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20180117, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0117.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in