Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Volume 73, Issue 4

Issues

A self-cleaning surface based on heat treatment of g-C3N4-coated wood prepared by a rapid and eco-friendly method

Yue Dong
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaodi Ji
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fenglong Li
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tat Thang Nguyen
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhanhua Huang
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Minghui Guo
  • Corresponding author
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-10 | DOI: https://doi.org/10.1515/hf-2018-0118

Abstract

A self-cleaning surface treatment has been developed, which is prepared by an eco-friendly and effective two-step method. First, graphitic carbon nitride (g-C3N4) was deposited on the wood surface by vacuum impregnation, followed by heat treatment. The morphology, weight change, dimensional stability, crystal and micro structure, and elemental composition of the wood samples were determined by photography, weighting, swelling rate determination, X-ray diffraction (XRD) and scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDXA). Moreover, contact angle measurements and photocatalytic degradation experiments were carried out with Rhodamine B as the target. It was demonstrated that g-C3N4 is successfully deposited on the wood surface, which lowers the heat treatment temperature and renders photocatalytic properties to the coating. The heat treatment at around 210°C strengthened the immobility of g-C3N4 and increased the surface hydrophobicity. Moreover, the better photocatalytic ability of the surface is accompanied with self-cleaning effects.

Keywords: graphitic carbon nitride (g-C3N4); heat treatment; self-cleaning; wood

References

  • Andersson, S., Serimaa, R., Paakkari, T., Saranpää, P., Pesonen, E. (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 49:531–537.CrossrefGoogle Scholar

  • Chang, F., Xie, Y., Li, C., Chen, J., Luo, J., Hu, X., Shen, J. (2013) A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Appl. Surf. Sci. 280:967–974.CrossrefWeb of ScienceGoogle Scholar

  • Chen, W.H., Hsu, H.C., Lu, K.M., Lee, W.J., Lin, T.C. (2011) Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36:3012–3021.Web of ScienceCrossrefGoogle Scholar

  • Chen, Y., Huang, W., He, D., Yue, S., Hong, H. (2014) Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Inter. 6:14405–14414.CrossrefWeb of ScienceGoogle Scholar

  • Dang, H., Jian, Z., Bassinot, F., Qiao, P., Cheng, X. (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5:225–230.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Dong, F., Wang, Z., Li, Y., Ho, W.K., Lee, S.C. (2014) Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 48:10345–10353.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Dong, H., Guo, X.T., Yang, C., Ouyang, Z.Z. (2018) Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin. Appl. Catal. B-Environ. 230:65–76.Web of ScienceCrossrefGoogle Scholar

  • Dubey Manoj, K., Pang, S., Walker, J. (2012) Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66:49–57.Web of ScienceGoogle Scholar

  • Evans, P.D., Wallis, A.F.A., Owen, N.L. (2000) Weathering of chemically modified wood surfaces. Wood. Sci. Technol. 34:151–165.CrossrefGoogle Scholar

  • Fu, Y., Yu, H., Sun, Q., Li, G., Liu, Y. (2012) Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung 66:739–744.Web of ScienceGoogle Scholar

  • Gao, L., Gan, W., Xiao, S., Zhan, X., Li, J. (2016) A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceram. Int. 42:2170–2179.CrossrefWeb of ScienceGoogle Scholar

  • Hakkou, M., Pétrissans, M., Gérardin, P., Zoulalian, A. (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym. Degrad. Stab. 91:393–397.CrossrefGoogle Scholar

  • Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z., Qu, L. (2016) Atomically thin mesoporous nanomesh of graphitic-C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Hayoz, P., Peter, W., Rogez, D. (2003) A new innovative stabilization method for the protection of natural wood. Prog. Org. Coat. 48:297–309.CrossrefGoogle Scholar

  • Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Krause, C. (2013) Structural analysis of heat-treated birch (Betula papyrifera) surface during artificial weathering. Appl. Surf. Sci. 264: 117–127.CrossrefGoogle Scholar

  • Hui, B., Li, G., Li, J., Via, B.K. (2016) Hydrothermal deposition and photoresponsive properties of WO3 thin films on wood surfaces using ethanol as an assistant agent. J. Taiwan Inst. Chem. E. 64:336–342.CrossrefWeb of ScienceGoogle Scholar

  • Hui, B., Li, J. (2016) Low-temperature synthesis of hierarchical flower-like hexagonal molybdenum trioxide films on wood surfaces and their light-driven molecular responses. J. Mater. Sci. 51:10926–10934.Web of ScienceCrossrefGoogle Scholar

  • Hui, B., Wu, D., Huang, Q., Cai, L., Li, G., Li, J., Zhao, G. (2015) Photoresponsive and wetting performances of sheet-like nanostructures of tungsten trioxide thin films grown on wood surfaces. Rsc Adv. 5:73566–73574.Web of ScienceCrossrefGoogle Scholar

  • Inari, G.N., Petrissans, M., Gerardin, P. (2007) Chemical reactivity of heat-treated wood. Wood. Sci. Technol. 41:157–168.CrossrefWeb of ScienceGoogle Scholar

  • Ishikura, Y., Nakano, T. (2005) Adsorption properties and structural features of alkali treated wood. J. Jpn. Wood Res. Soc. 51:364–371.CrossrefGoogle Scholar

  • Ji, X., Guo, M. (2017) Facile surface hydrophobization of medium-density fiberboard (MDF) by silver deposition. Holzforschung 71:337–340.Web of ScienceGoogle Scholar

  • Jia, S., Liu, M., Wu, Y., Luo, S., Yan, Q., Chen, H. (2016) Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES. Appl. Surf. Sci. 386:115–124.CrossrefWeb of ScienceGoogle Scholar

  • Kong, L., Tu, K., Guan, H., Wang, X. (2017) Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Appl. Surf. Sci. 407: 479–484.CrossrefWeb of ScienceGoogle Scholar

  • Liu, Y. (2016) Formation and properties of polyelectrolytes/TiO2 composite coating on wood surfaces through layer-by-layer assembly method. Holzforschung 70:361–367.Web of ScienceCrossrefGoogle Scholar

  • Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q. (2014) Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface. Holzforschung 68:345–351.Web of ScienceGoogle Scholar

  • Mahr, M.S., Hübert, T., Stephan, I., Bücker, M., Militz, H. (2013) Reducing copper leaching from treated wood by sol-gel derived TiO2 and SiO2 depositions. Holzforschung 67:429–435.Web of ScienceGoogle Scholar

  • Manoudis, P.N., Karapanagiotis, I., Tsakalof, A., Zuburtikudis, I., Panayiotou, C. (2008) Superhydrophobic composite films produced on various substrates. Langmuir 24:11225–11232.CrossrefWeb of SciencePubMedGoogle Scholar

  • Navickas, P., Albrektas, D. (2013). Effect of heat treatment on sorption properties and dimensional stability of wood. Mater. Sci. 19:291–294.Web of ScienceGoogle Scholar

  • Nguyen, T.T., Ji, X., Nguyen, T.H.V., Guo, M. (2017) Wettability modification of heat-treated wood (HTW) via cold atmospheric-pressure nitrogen plasma jet (APPJ). Holzforschung 72:37–43.Web of ScienceGoogle Scholar

  • Pétrissans, M., Gérardin, P., Bakali, I.E., Serraj, M. (2003) Wettability of heat-treated wood. Holzforschung 57:301–307.Google Scholar

  • Qu, M., Pelkonen, P., Tahvanainen, L., Arevalo, J., Gritten, D. (2012) Experts’ assessment of the development of wood framed houses in China. J. Clean. Prod. 31:100–105.CrossrefWeb of ScienceGoogle Scholar

  • Song, W., Wei, W., Ren, C., Zhang, S. (2017) Effect of heat treatment or alkali treatment of veneers on the mechanical properties of eucalyptus veneer/polyethylene film plywood composites. Bioresources 12:8683–8703.Web of ScienceGoogle Scholar

  • Sun, B.L., Wang, Z., Liu, J.L. (2017) Changes of chemical properties and the water vapour sorption of Eucalyptus pellita wood thermally modified in vacuum. J. Wood Sci. 63:133–139.Web of ScienceCrossrefGoogle Scholar

  • Sun, Q.F., Yu, H.P., Liu, Y.X., Jian, L., Yun, L., Hunt, J.F. (2010) Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung 64:757–761.Web of ScienceGoogle Scholar

  • Wang, Z., Sun, B.L., Liu, J.L. (2017) Investigation of volatile products released during vacuum heat treatment of larch wood. Wood Res. 62:773–782.Google Scholar

  • Wolkenhauer, A., Avramidis, G., Militz, H., Viöl, W. (2008) Plasma treatment of heat treated beech wood – investigation on surface free energy. Holzforschung 62:472–474.Web of ScienceGoogle Scholar

  • Yan, S.C., Li, Z.S., Zou, Z.G. (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Yang, P., Ou, H., Fang, Y., Wang, X. (2017) A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew. Chem. 56:3992–3996.Web of ScienceCrossrefGoogle Scholar

  • Zhang, S., Hang, N., Zhang, Z., Yue, H., Yang, W. (2017) Preparation of g-C3N4/graphene composite for detecting NO2 at room temperature. Nanomaterials 7:12.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, Y., Thomas, A., Antonietti, M., Wang, X. (2009) Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 131:50–51.PubMedCrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-05-23

Accepted: 2018-11-07

Published Online: 2018-12-10

Published in Print: 2019-04-24


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This research was financially supported by the National Key Research and Development Program of China (2017YFD0600204).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, Volume 73, Issue 4, Pages 393–399, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0118.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in