Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Bioconversion of pine stumps to ethanol: pretreatment and simultaneous saccharification and fermentation

Cátia Vanessa Teixeira Mendes
  • CIEPQPF, Department of Chemical Engineering, University of Coimbra, R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Priscilla Vergara
  • INIA, National Institute of Agricultural and Food Research and Technology – Pulp and Paper Laboratories, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jose María Carbajo
  • INIA, National Institute of Agricultural and Food Research and Technology – Pulp and Paper Laboratories, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Carlos Villar
  • INIA, National Institute of Agricultural and Food Research and Technology – Pulp and Paper Laboratories, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Manuel dos Santos Rocha
  • CIEPQPF, Department of Chemical Engineering, University of Coimbra, R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria da Graça Videira de Sousa Carvalho
  • Corresponding author
  • CIEPQPF, Department of Chemical Engineering, University of Coimbra, R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-28 | DOI: https://doi.org/10.1515/hf-2018-0126

Abstract

The technical viability was investigated for the conversion of Pinus pinaster stumps to value-added products via a chain of pretreatments and simultaneous saccharification and fermentation (SSF) steps to obtain bioethanol. Sequential steam explosion (SE), organosolv (OS) pretreatment and soda-anthraquinone pulping (Na/AQ) were performed resulting in an unbleached pulp (UBP), which was successfully converted via SSF to bioethanol with concentrations up to 79 g l−1, which corresponds to a conversion yield of 97% and productivity of 1.09 g l−1 h−1 at 15% total solids. Accordingly, delignification steps by oxygen bleaching are not necessary for bioethanol production. Different industrial softwood (SW) pulps were also tested as reference materials. Total lignin contents up to 4.5% in SW-based pulps had no adverse effects on SSF efficiency.

Keywords: bioethanol; organosolv pulping; pine stumps; simultaneous saccharification and fermentation (SSF); soda-AQ pulping; steam explosion

References

  • Alvira, P., Pejó-Tomás, E., Ballesteros, M., Negro, M.J. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101:4851–4861.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Bozell, J.J., Astner, A.F., Young, T.M., Rials, T.G. (2018) Optimization of components yields and thermal properties by organosolv fractionation of loblolly pine (Pinus taeda) using response surface design. BioEnergy Res. 11:1–13.Google Scholar

  • Buzala, K.P., Kalinowska, H., Malachowska, E., Przybysz, P. (2017) The utility of selected kraft hardwood and softwood pulps for fuel ethanol. Ind. Crops Prod. 108:824–830.CrossrefWeb of ScienceGoogle Scholar

  • Cheng, N., Koda, K., Tamai, Y., Yamamoto, Y., Takasuka, T.E., Uraki, Y. (2017) Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresour. Technol. 232:126–132.CrossrefWeb of SciencePubMedGoogle Scholar

  • Cotana, F., Cavalaglio, G., Gelosia, M., Nicolini, A., Coccia, V., Petrozzi, A. (2014) Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia 45:42–51.CrossrefGoogle Scholar

  • Frankó, B., Galbe, M., Wallber, O. (2016) Bioethanol production from forestry residues: a comparative techno-economic analysis. Appl. Energy 184:727–736.Web of ScienceCrossrefGoogle Scholar

  • Kumar, A.K., Sharma, S. (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4:7–26.PubMedCrossrefGoogle Scholar

  • Leskinen, T., Kelley, S.S., Argyropoulos, D.S. (2017) E-beam irradiation & steam explosion as biomass pretreatment, and the complex role of lignin in substrate recalcitrance. Biomass Bioenergy 103:21–28.CrossrefWeb of ScienceGoogle Scholar

  • Martín-Sampedro, R., Martín, J.A., Eugenio, M.E., Revilla, E., Villar, J.C. (2011) Steam explosion treatment of Eucalyptus globulus wood: influence of operational conditions on chemical and structural modifications. Bioresources 64:4922–4935.Google Scholar

  • Matsakas, L., Nitsos, C., Raghavendran, V., Yakimenko, O., Persson, G., Olsson, E., Rova, U., Olsoon, L., Christakopoulos, P. (2018) A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 11:160–174.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Rivas, S., Raspolli-Galletti, A.M., Antonetti, C., Santos, V., Parajó, J.C. (2016) Sustainable conversion of Pinus pinaster wood into fuel precursors: a biorefinery approach. Fuel 164:51–58.CrossrefGoogle Scholar

  • Seidl, P.R., Goulart, A.K. (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr. Opin. Green Sustain. Chem. 2:48–53.CrossrefWeb of ScienceGoogle Scholar

  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO, 2008. (Technical Report NREL/TP-510-42618).Google Scholar

  • Stoffel, R.B., Neves, P.V., Felissia, F.E., Ramos, L.P., Gassa, L.M., Area, M.C. (2017) Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy 107:93–101.Web of ScienceCrossrefGoogle Scholar

  • Valenzuela, R., Priebe, X., Troncoso, E., Ortega, I., Parra, C., Freer, J. (2016) Fiber modifications by organosolv catalyzed with H2SO4 improves SSF of Pinus radiata. Ind. Crops Prod. 86:79–86.Web of ScienceCrossrefGoogle Scholar

  • Várnai, A., Huikko, L., Pere, J., Siika-aho, M., Viikari, L. (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour. Technol. 102:9096–9104.Web of ScienceCrossrefPubMedGoogle Scholar

  • von Schenck, A., Berglin, N., Uusitalo, J. (2013) Ethanol from Nordic wood raw material by simplified soda cooking pre-treatment. Appl. Energy 102:229–240.Web of ScienceCrossrefGoogle Scholar

  • Yamamoto, M., Iakovlev, M., Bankar, S., Tunc, M.S., van Heiningen, A. (2014) Enzymatic hydrolysis of hardwood and softwood harvest residue fibbers released by sulfur dioxide-ethanol-water fractionation. Bioresour. Technol. 167:530–538.CrossrefGoogle Scholar

  • Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G. (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew. Sust. Energy Rev. 71:475–501.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-06-04

Accepted: 2019-01-16

Published Online: 2019-02-28


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work has been framed under the MultiBiorefinery Project (POCI-01-0145-FEDER-016403) “Multi-purpose strategies for broadband agro-forest and fisheries by-products valorization: a step forward for a truly integrated biorefinery”. Cátia Mendes is grateful for the research grant provided.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180126, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0126.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in