Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Thermal stability of lignin in ground pulp (GP) and the effect of lignin modification on GP’s thermal stability: TGA experiments with dimeric lignin model compounds and milled wood lignins

Daisuke Ando
  • Corresponding author
  • Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan, Phone: +81-774-38-3658, Fax: +81-774-38-3655
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fumiaki Nakatsubo
  • Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiroyuki Yano
  • Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-22 | DOI: https://doi.org/10.1515/hf-2018-0137

Abstract

For ground pulp (GP) utilization in wood fiber composites as reinforced material, its thermal behavior is relevant. The contribution of lignin to thermal performance of GP from Pinus densiflora was the focus of the present study. Dimeric lignin model compounds and isolated milled wood lignins (MWLs) from three sources were submitted for thermogravimetric analysis (TGA). The temperatures leading to 1% weight loss (T per 1% WL) for the material were determined. The thermal stability of β-O-4 models was the lowest. Among the MWLs, the abaca MWL with its high β-O-4 content was the least thermostable. An acetylated nonphenolic β-O-4 lignin model compound showed that acetylation improves the thermal stability of this type of dimeric models. The acetylation of benzylic OH groups in β-O-4 linkages is especially relevant for the thermal resistance, which was also shown based on pre-acetylated benzylic OH groups in the GP before the total acetylation.

Keywords: β-β substructure; β-5 substructure; β-O-4 substructure; acetylation; dimeric lignin model compounds; ground pulp; milled wood lignins; thermal stability; thermogravimetric analysis (TGA)

References

  • Ando, D., Nakatsubo, F., Yano, H. (2017) Acetylation of ground pulp: monitoring acetylation via HSQC-NMR spectroscopy. ACS Sustain. Chem. Eng. 5:1755–1762.CrossrefWeb of ScienceGoogle Scholar

  • Björkman, A. (1956) Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Sven Papperstidn. 59:477–485.Google Scholar

  • Boerjan, W., Ralph, J., Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546.CrossrefPubMedGoogle Scholar

  • Brodin, M., Vallejos, M., Opedal, M.T., Area, M.C., Chinga-Carrasco, G. (2017) Lignocellulosics as sustainable resources for production of bioplastics – a review. J. Clean. Prod. 162:646–664.CrossrefWeb of ScienceGoogle Scholar

  • del Río, J.C., Rencoret, J., Marques, G., Gutiérrez, A., Ibarra, D., Santos, J.I., Jiménez-Barbero, J., Zhang, L., Martínez, A.T. (2008) Highly acetylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J. Agric. Food Chem. 56:9525–9534.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Digabel, F.L., Avérous, L. (2006) Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydr. Polym. 66:537–545.CrossrefGoogle Scholar

  • Duval, A., Lawoko, M. (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 85:78–96.CrossrefWeb of ScienceGoogle Scholar

  • Elder, T. (2013) Bond dissociation enthalpies of a dibenzodioxocin lignin model compound. Energy Fuels 27:4785–4790.Web of ScienceCrossrefGoogle Scholar

  • Elder, T. (2014) Bond dissociation enthalpies of a pinoresinol lignin model compound. Energy Fuels 28:1175–1182.CrossrefWeb of ScienceGoogle Scholar

  • FitzPatrick, M., Champagne, P., Cunningham, M.F., Whitney, R.A. (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 101:8915–8922.CrossrefWeb of SciencePubMedGoogle Scholar

  • Hatakeyama, H., Hatakeyama, T. (2010) Lignin structure, properties, and applications. Adv. Polym. Sci. 232:1–63.Google Scholar

  • Higuchi, T. (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci. Technol. 24:23–63.Google Scholar

  • Huang, J., Liu, C., Wu, D., Tong, H., Ren, L. (2014) Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound. J. Anal. Appl. Pyrolysis 109:98–108.CrossrefWeb of ScienceGoogle Scholar

  • Iwamoto, S., Yamamoto, S., Lee, S.H., Endo, T. (2014) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21:1573–1580.Web of ScienceCrossrefGoogle Scholar

  • Kawamoto, H. (2017) Lignin pyrolysiss reactions. J. Wood Sci. 63:117–132.CrossrefWeb of ScienceGoogle Scholar

  • Kim, S., Chmely, S.C., Nimlos, M.R., Bomble, Y.J., Foust., T.D., Paton, R.S., Beckham, G.T. (2011) Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J. Phys. Chem. Lett. 2:2846–2852.CrossrefWeb of ScienceGoogle Scholar

  • Laurichesse, S., Avérous, L. (2014) Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 39:1266–1290.Web of ScienceCrossrefGoogle Scholar

  • Menon, V., Rao, M. (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38:522–550.CrossrefWeb of ScienceGoogle Scholar

  • Nakatsubo, F. (1981) Enzymatic dehydrogenation of p-coumaryl alcohol and syntheses of oligolignols. Wood Res 67:59–118.Google Scholar

  • Nakatsubo, F., Sato, K., Higuchi, T. (1975) Synthesis of guaiacyl-glycerol-β-guaiacyl ether. Holzforschung 29:165–168.CrossrefGoogle Scholar

  • Parthasarathi, R., Romero, R.A., Redondo, A., Gnanakaran, S. (2011) Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2:2660–2666.Web of ScienceCrossrefGoogle Scholar

  • Rowell, R.M. (2005) Thermal Properties, Combustion, and Fire Retardancy of Wood, Handbook of Wood Chemistry and Wood Composites. CRC Press, Boca Raton, FL. Chapter 6.Google Scholar

  • Sen, S., Patil, S., Argyropoulos, D.S. (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 17:4862–4887.CrossrefWeb of ScienceGoogle Scholar

  • Upton, B.M., Kasko, A.M. (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116:2275–2306.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wang, J., Manley, R.S.J., Feldman, D. (1992) Synthetic-polymer lignin copolymers and blends. Prog. Polym. Sci. 17: 611–646.CrossrefGoogle Scholar

  • Wang, C., Kelley, S.S., Venditti, R.A. (2016) Lignin-based thermoplastic materials. ChemSusChem 9:770–783.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Younker, J.M., Beste, A., Buchanan III, A.C. (2012) Computational study of bond dissociation enthalpies for lignin model compounds: β-5 Arylcoumaran. Chem. Phys. Lett. 545:100–106.Web of ScienceCrossrefGoogle Scholar

  • Zhao, J., Xiuwen, W., Hu, J., Liu, Q., Shen, D., Xiao, R. (2014) Thermal degradation of softwood lignin and hardwood lignin by FTIR and Py-GC/MS. Polym. Degrad. Stabil. 108: 133–138.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-06-12

Accepted: 2018-11-13

Published Online: 2018-12-22


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) (Funder Id: 10.13039/501100001863, Grant Number P09010, Japan), by a Grant-in-Aid for JSPS Fellows (Grant Number 15J09745) and by JSPS Overseas Research Fellowships.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180137, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0137.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in