Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

In situ polymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-(methacryloxy)propyltrimethoxysilane (MAPTES) in poplar cell wall to enhance its dimensional stability

Yaoge Huang
  • Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gaiyun Li
  • Corresponding author
  • Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fuxiang Chu
Published Online: 2018-12-25 | DOI: https://doi.org/10.1515/hf-2018-0139

Abstract

Poplar wood samples (2×2×2 cm3) were vacuum/pressure impregnated in alcoholic solution with 2-hydroxyethyl methacrylate (HEMA) and 3-(methacryloxy)propyltrimethoxysilane (MAPTES) in a mass ratio of 3/1 in the presence of catalytic amounts of azobisisobutyronitrile (AIBN). Because of their good solubility and permeability, the HEMA/MAPTES precursors evenly penetrate the poplar cell wall. The impregnated samples were heated at 75°C for 8 h, followed by a heating period at 103±2°C for 8 h, in the course of which an in situ polymerization occurred in the cell wall. The modified wood was characterized by Fourier transform infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Moreover, the dimensional stability of the modified wood was measured and found to be considerably improved.

Keywords: dimensional stability; grafting; hydroxyethyl methacrylate; in situ polymerization; organosilane; poplar wood; wood wall

References

  • Agarwal, U.P., Reiner, R.S. (2009) Near IR surface enhanced Raman spectrum of lignin. J. Raman Spectr. 40:1527–1534.CrossrefGoogle Scholar

  • Ayrilmis, N., Dundar, T., Kaymakci, A., Ozdemir, F., Kwon, J.H. (2014) Mechanical and thermal properties of wood-plastic composites reinforced with hexagonal boron nitride. Polym. Compos. 35:194–200.Web of ScienceCrossrefGoogle Scholar

  • Bergamonti, L., Berzolla, A., Chiappini, E., Feci, E., Maistrello, L., Palanti, S., Vaccari, G. (2017) Polyamidoamines (PAAs) functionalized with siloxanes as wood preservatives against fungi and insects. Holzforschung 71:65–75.Web of ScienceGoogle Scholar

  • Budunoglu, H., Yildirim, A., Guler, M.O., Bayindir, M. (2011) Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl. Mater. Interfaces 3:539–545.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Cai, S., Jebrane, M., Terziev, N. (2016) Curing of wood treated with vinyl acetate-epoxidized linseed oil copolymer (VAc-ELO). Holzforschung 70:305–312.CrossrefWeb of ScienceGoogle Scholar

  • Chen, G.C. (2008) Synthesis of ethylene maleic anhydride copolymer containing fungicides and evaluation of their effect for wood decay resistance. Holzforschung 62:488–493.Web of ScienceGoogle Scholar

  • Chen, H., Lang, Q., Bi, Z., Miao, X., Li, Y., Pu, J. (2014) Impregnation of poplar wood (Populus euramericana) with methylolurea and sodium silicate sol and induction of in-situ gel polymerization by heating. Holzforschung 68:45–52.Web of ScienceGoogle Scholar

  • Dong, Y., Wang, K., Yan, Y., Zhang, S., Li, J. (2016) Grafting polyethylene glycol dicrylate (PEGDA) to cell walls of poplar wood in two steps for improving dimensional stability and durability of the wood polymer composite. Holzforschung 70:919–926.Web of ScienceGoogle Scholar

  • Ermeydan, M.A., Cabane, E., Masic, A., Koetz, J., Burgert, I. (2012) Flavonoid insertion into cell walls improves wood properties. ACS Appl. Mater. Interfaces 4:5782–5789.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ermeydan, M.A., Cabane, E., Gierlinger, N., Koetz, J., Burgert, I. (2014a) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv. 4:12981–12988.CrossrefWeb of ScienceGoogle Scholar

  • Ermeydan, M.A., Cabane, E., Hass, P., Koetz, J., Burgert, I. (2014b) Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls. Green Chem. 16:3313–3321.Web of ScienceCrossrefGoogle Scholar

  • Faix, O., Andersons, B., Zakis, G. (1998) Determination of carbonyl groups of six round robin lignins by modified oximation and FTIR spectroscopy. Holzforschung 52:268–274.CrossrefGoogle Scholar

  • Gan, L., Guo, H., Wang, Z., Li, X., Peng, W., Wang, J., Su, M. (2013) A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 104:117–123.Web of ScienceCrossrefGoogle Scholar

  • Gierlinger, N., Schwanninger, M., Reinecke, A., Burgert, I. (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081.CrossrefPubMedGoogle Scholar

  • Gierlinger, N., Keplinger, T., Harrington, M. (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7:1694–1708.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Graupner, N. (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J. Mater. Sci. 43:5222–5229.CrossrefWeb of ScienceGoogle Scholar

  • Hung, K.C., Wu, J.H. (2017) Characteristics and thermal decomposition kinetics of wood-SiO2 composites derived by the sol-gel process. Holzforschung 71:233–240.Web of ScienceGoogle Scholar

  • Kwok, A.Y., Qiao, G.G., Solomon, D.H. (2004) Interpenetrating amphiphilic polymer networks of poly(2-hydroxyethyl methacrylate) and poly(ethylene oxide). Chem. Mater. 16:5650–5658.CrossrefGoogle Scholar

  • Lei, Z., Gao, J., Liu, X., Liu, D., Wang, Z. (2016) Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) brushes as peptide/protein microarray substrate for improving protein binding and functionality. ACS Appl. Mater. Interfaces 8:10174–10182.CrossrefWeb of SciencePubMedGoogle Scholar

  • Li, G., Ye, S., Morita, S., Nishida, T., Osawa, M. (2004) Hydrogen bonding on the surface of poly(2-methoxyethyl acrylate). J. Am. Chem. Soc. 126:12198–12199.CrossrefPubMedGoogle Scholar

  • Liu, R., Luo, S., Cao, J., Chen, Y. (2016) Mechanical properties of wood flour/poly (lactic acid) composites coupled with waterborne silane-polyacrylate copolymer emulsion. Holzforschung 70:439–447.Web of ScienceGoogle Scholar

  • Mackova, H., Plichta, Z., Hlidkova, H., Sedláček, O., Konefal, R., Sadakbayeva, Z., Kubinova, S. (2017) Reductively degradable poly(2-hydroxyethyl methacrylate) hydrogels with oriented porosity for tissue engineering applications. ACS Appl. Mater. Interfaces 9:10544–10553.CrossrefWeb of SciencePubMedGoogle Scholar

  • Noisser, T., Reichenauer, G., Husing, N. (2014) In situ modification of the silica backbone leading to highly porous monolithic hybrid organic-inorganic materials via ambient pressure drying. ACS Appl. Mater. Interfaces 6:1025–1029.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Polakova, L., Raus, V., Kostka, L., Braunova, A., Pilar, J., Lobaz, V., Sedlakova, Z. (2015) Antioxidant properties of 2-hydroxyethyl methacrylate-based copolymers with incorporated sterically hindered amine. Biomacromolecules 16:2726–2734.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Reza, M., Rojas, L.G., Kontturi, E., Vuorinen, T., Ruokolainen, J. (2013) Accessibility of cell wall lignin in solvent extraction of ultrathin spruce wood sections. ACS Sustain. Chem. Eng. 2:804–808.Web of ScienceGoogle Scholar

  • Shea, K.J., Loy, D.A. (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem. Mater. 13:3306–3319.Google Scholar

  • Stewart, A., Schlosser, B., Douglas, E.P. (2013) Surface modification of cured cement pastes by silane coupling agents. ACS Appl. Mater. Interfaces 5:1218–1225.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Trey, S., Jafarzadeh, S., Johansson, M. (2012) In situ polymerization of polyaniline in wood veneers. ACS Appl. Mater. Interfaces 4:1760–1769.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Van Apeldoorn, A.A., Van Manen, H.J., Bezemer, J.M., De Bruijn, J.D., Van Blitterswijk, C.A., Otto, C. (2004) Raman imaging of PLGA microsphere degradation inside macrophages. J. Am. Chem. Soc. 126:13226–13227.CrossrefPubMedGoogle Scholar

  • Weaver, J.V.M., Bannister, I., Robinson, K.L., Bories-Azeau, X., Armes, S.P., Smallridge, M., McKenna, P. (2004) Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate. Macromolecules 37:2395–2403.CrossrefGoogle Scholar

  • Wu, Z., Dai, S., Overbury, S.H. (2009) Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts. J. Phys. Chem. C 114:412–422.Google Scholar

  • Yoshida, W., Castro, R.P., Jou, J.D., Cohen, Y. (2001) Multilayer alkoxysilane silylation of oxide surfaces. Langmuir 17:5882–5888.CrossrefGoogle Scholar

  • Zhang, X., Ji, Z., Zhou, X., Ma, J.F., Hu, Y.H., Xu, F. (2015) Method for automatically identifying spectra of different wood cell wall layers in Raman imaging data set. Anal. Chem. 87:1344–1350.Web of ScienceCrossrefPubMedGoogle Scholar

About the article

Received: 2018-06-14

Accepted: 2018-11-21

Published Online: 2018-12-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by the National key research and development plan of China (No.2017YFD0600203).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180139, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0139.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in